
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

nyan - Hierarchical Key-Value
Database with Inheritance and

Runtime Patching

Jonas Jelten

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

nyan - Hierarchical Key-Value Database with
Inheritance and Runtime Patching

nyan - Hierarchische Schlüssel-Werte
Datenbank mit Vererbung und

Laufzeitveränderungen

Author: Jonas Jelten
Supervisor: Prof. Dr. Gudrun Klinker
Advisor: M.Sc. Sandro Weber
Date: 2017-10-15

I confirm that this master’s thesis is my own work and I have documented all
sources and material used.

München, 2017-10-15 Jonas Jelten

Abstract

Complex applications such as real-time strategy games often
source their content and configuration from a dedicated descrip-
tion interface. This separated interface requires a powerful data
description framework to express the desired structures. This
thesis introduces nyan, a data description framework which
is designed as an external content and configuration storage.
nyan incorporates several features which are unavailable in cur-
rent data description systems. These include type-safe represen-
tation of hierarchically related data and transitive modifications
at runtime. The framework provides two main interfaces. A
user-friendly language in which configuration data is declared
and an API over which the data can be accessed and modified.
The data description language uses the concept of inheritance to
enable specification of hierarchical structures. The API provides
means of dynamic data modification and subsequent rollbacks.
This is realized by tracking all occuring runtime changes and
their time of commit. Dynamic changes are specified as patches,
also written in the nyan language. In contrast to existing con-
figuration systems, nyan provides all of these features directly
through its semantics without sacrificing its generalizability in
contrast to an application-specific language. The nyan database
library is implemented in C++14 and is published as a free soft-
ware project.

vii

Zusammenfassung

Komplexe Anwendungen wie Echtzeit-Strategiespiele beziehen
ihren Inhalt und ihre Konfiguration oft über eine dedizierte Be-
schreibungsschnittstelle. Diese getrennte Schnittstelle erfordert
ein mächtiges Datenbeschreibungssystem, um die gewünschten
Strukturen auszudrücken. Diese Arbeit stellt nyan vor, ein Da-
tenbeschreibungssystem, das als externe Daten- und Konfigura-
tionsspeicherung konzipiert ist. nyan enthält einige Funktionen,
die in aktuellen Datenbeschreibungs-Systemen nicht verfügbar
sind. Dazu gehören die typsichere Darstellung hierarchisch
verknüpfter Daten und die transitive Anpassung zur Laufzeit.
Das System bietet zwei wesentliche Schnittstellen. Eine benut-
zerfreundliche Sprache, in der Konfigurationsdaten deklariert
werden und eine API, über die auf die Daten zugegriffen und
diese geändert werden können. Die Datenbeschreibungsspra-
che nutzt das Prinzip der Vererbung, um die Angabe hierarchi-
scher Strukturen zu ermöglichen. Die API bietet die Möglichkeit
der dynamischen Datenmodifikation und des anschließenden
Zurücksetzens. Dies wird durch die Aufzeichnung aller auf-
tretenden Laufzeitänderungen und deren Übernahmezeit reali-
siert. Dynamische Änderungen werden als Patches angegeben,
die ebenfalls in der nyan-Sprache geschrieben werden. Im Ge-
gensatz zu bestehenden Konfigurationssystemen stellt nyan all
diese Funktionen direkt durch seine Semantik zur Verfügung,
ohne seine Verallgemeinerungsfähigkeit im Gegensatz zu ei-
ner anwendungsspezifischen Sprache zu verlieren. Die nyan
Datenbank-Bibliothek ist in C++14 implementiert und wird als
freies Software-Projekt veröffentlicht.

ix

Contents

Abstract vii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Outline . 3

2 Foundation 5
2.1 Game Engine . 5
2.2 Modding APIs . 5
2.3 Database . 6
2.4 Inheritance . 7
2.5 Language Oriented Programming 8

3 Related Work 11
3.1 YAML and JSON . 11
3.2 QML . 13
3.3 Mod APIs . 14

3.3.1 Minecraft Forge . 14
3.3.2 OpenTTD NewGRF . 14
3.3.3 Skyrim Creation Kit . 15

4 Design 17
4.1 Engine and Content Separation 17
4.2 Concept . 18
4.3 Input Language . 19

4.3.1 Object Definition . 20
4.3.2 Types . 20
4.3.3 Inheritance . 22
4.3.4 Values and Operators . 23
4.3.5 Patch Definitions . 24
4.3.6 Language Grammar . 28

4.4 Type System . 29
4.5 Multiple Inheritance . 31
4.6 Namespaces and Importing . 33
4.7 Database Views . 35
4.8 Transactions . 36
4.9 Application Interaction . 37

xi

Contents

5 Implementation 39
5.1 Lexical Analysis . 39
5.2 Abstract Syntax Tree . 40
5.3 Initial State . 41
5.4 Storage . 43
5.5 Views and Transactions . 44
5.6 Queries . 45
5.7 General Remarks . 46

6 Evaluation and Discussion 47
6.1 Functionality . 47

6.1.1 Application Integration 47
6.1.2 Unit Hierarchy . 52
6.1.3 Mod Combination . 54
6.1.4 Creating a Scripting API 54
6.1.5 Schema Extension . 55

6.2 Error Checking . 59
6.3 Security . 60
6.4 Design Considerations . 60
6.5 Feature Comparison . 61
6.6 Limitations . 63

6.6.1 Database Properties . 63
6.6.2 Expressions . 63
6.6.3 Update Notifications . 63

7 Conclusion 65
7.1 Future Work . 65

7.1.1 Compiling nyan . 65
7.1.2 Value Formulas . 65
7.1.3 Event Callbacks . 66
7.1.4 List and Dict Type . 66
7.1.5 Nesting Containers . 67
7.1.6 Documentation Generation 67
7.1.7 Set Specialization Operators 67
7.1.8 Serialization . 69
7.1.9 Python Interface . 69

7.2 Summary . 70
7.3 Conclusion . 71

Appendix 73
Glossary . 73
Figures . 75
Tables . 75
Listings . 76
Bibliography . 80

xii

1 Introduction

1.1 Motivation

Reusing parts of a software for different applications saves time and thought.
Frameworks are created to provide reusable designs for entire applications [23].

For game development, the game engine is the framework to build the game
with: When designed well, there is a clear distinction between engine and game
content [5][7]. The building blocks of the game engine can then be combined
into the desired game behavior and look. The interface of the game engine,
which allows the configuration and recombination of the engine’s features (like
game logic, user interface) is its application programming interface (API) [21].

For example in real-time strategy games, such as Age of Empires or StarCraft,
this interface must be powerful enough to reflect all aspects of the game me-
chanics. In these games, the goal is to collect resources to build up an army
and win against the (human or computer controlled) opponents. Each player
chooses a civilization or nation to play as. During the game, each player can
control many units (200 or more), and each type of unit has special traits: It
has a distinct look, abilities (behavior) and can be improved through research
(upgrades). The units are structured in hierarchies, for example in Age of Em-
pires, a “crossbowman” is an “archer”, which is a “ranged unit”, which is a
“unit”. When an upgrade for all ranged units is researched, it will affect all
crossbowmen, and archers. An upgrade for a crossbowman does not affect
archers or ranged units. There is also the need for team bonuses (a player’s
civilization provides improvements for all players that are a member of one
team) [36].

A game engine has to provide configuration data structures and computa-
tional support to perform the game simulation that follows the configuration
information. Modern games support the creation of mods, which are plug-ins
to enhance and overhaul the game easily. They can, for example, add new
civilizations, perform tuning to unit properties so the game becomes more
balanced, add new stories and scenarios etc. Support for game mods can bring
great improvements and new content for the project [49].
nyan is a framework to be used by an application like a game engine. nyan

provides features to create advanced configuration systems, for example to
extend the game logic and modify assets. The need for such a system was
discovered during development of the openage game engine [36]. openage
is a open-source realtime strategy game engine, which is designed to run
Age of Empires 2 and similar real-time strategy games [36]. One goal of the

1

1 Introduction

project is to not only run the game alone, but also to allow modifications and
extensions through mods. Independently developed mod should be able to be
combined without conflicts. nyan was designed for exactly that purpose: To
create a general-purpose run-time configuration system for the configuration
and extension of the openage game engine. The system is designed to be used
in other games and applications as well, therefore usage is not restricted to
openage. In layman’s terms: nyan is not made for building a machine, but
rather to provide a nice way to control its levers and valves.

1.2 Goals

The overall goal of this thesis was to develop a data specification framework
which can handle hierarchical and connected data structures and their transitive
modifications. This framework is designed to be embedded in an application.
The framework consists of a data description language, a storage database and
an API to be used by the application. The API is used by the application for
queries and data modifications.

The data description language is the nyan language, which is used to store
configuration records in “.nyan” files. The language must be expressive
enough to allow to provide the features mentioned in section 1.1. The lan-
guage to be created has to be declarative [27] and type safe. A proper parser for
this language has to be created. The integrity of loaded data is checked when
new files are loaded to detect errors as early as possible [28].

For sanity and type checks, nyan must support the configuration of the
allowed data structure, which is the data schema. An application can then rely
on it for queries.

In order to extend the application, it must be possible to update the data
schema while the application is running. To allow independent modifications to
the schema, present data must not become invalid, but data for the new schema
must be allowed. The nyan database must therefore provide an API enabling
for queries to records and schema configurations.

When this is implemented properly, a game engine like openage can be
changed through mods and new content can be added. Those mods perform
their changes through the nyan language, where they describe their entry
points, new artwork, new unit behavior and properties, and so on. nyan is
not a general-purpose programming language, it should only make it possible
to describe data structures for values and to register custom functions in the
application so they are called when appropriate.

The openage engine is attempting an event-based simulation approach,
where game state predictions are made, and when preconditions change, those
may be dropped [60][36]. Predictions are used to schedule updates in the nyan
database to be activated at a future point in time, for example the prediction of
a change to a speed property that all horse units will run faster in 10 seconds.
Those updates must be rolled back if the prediction turns out to be wrong [60].

2

1.3 Outline

nyan must be able to support this kind of history tracking and rollbacks.
In the end, nyan shall be a framework to support all those requirements and

be completely rounded, following the usability principle ”Fancy is easy. Simple
is hard.” [56] and guided by the Zen of Python [40].

1.3 Outline

The current introduction chapter summarizes the thesis’ subject and purpose.
Background information regarding involved concepts for understanding fol-
lowing sections is provided in Chapter 2. Related approaches for the problem
nyan is designed to solve are presented in Chapter 3. In Chapter 4, the design
of the nyan language, database and API are elaborated, including all necessary
components. Chapter 5 presents a possible implementation that works in prac-
tice, followed by Chapter 6 which examines the implementation’s effectiveness
and discusses properties and potential problems of the design ideas. Finally,
Chapter 7 proposes possible extensions for the future and concludes this thesis.

3

2 Foundation
This chapter will provide information for understanding later sections of this
thesis. It introduces fundamental concepts, on which the work described in this
thesis is based on.

2.1 Game Engine

A game engine is a framework for creating interactive realtime graphics appli-
cations. It implements algorithms for calculating the virtual world simulation,
which is the game that is run [5].

The game engine is the foundation of a game, if it does not support a certain
feature or provide some means to add it, the game cannot use it. The interface
which the game makes use of to access and configure those features is called
API. Hence, the crucial component of a game engine is its API [21].

If one has access to the source code of the game engine, any feature can
be added by the developers. Once the game was distributed to a user base,
changes can only be delivered if users perform software updates, which are
authored by the engine developers. This includes changes to the engine API,
but software using this API can be distributed independently. That means if
the API enables it, other developers can change and enhance the game without
ever touching the game engine itself. Because of that, a game engine should
provide a good API so content creators don’t have to adapt the game engine [7].

Today’s notable high-class commercial engines are Creation, GameBryo,
Unity, Unreal, Source, CryEngine [26].

2.2 Modding APIs

The word “modding” is a derived gerund from the verb “modify” and means
the customization of something. Mainly used in the technology world, it
means the attempt to get more out of a given product. The community which
collaborates and organizes itself to create so-called “mods” is growing bigger
and bigger [49].

Such modifications often are not intended by the original manufacturer, but
can bring some significant improvements over the “vanilla” (i.e. unchanged)
product. For example, Apple had removed the standard headphone jack from
the iPhone 7, but recently a “modder” added it back in [31].

Though this example is from the hardware world, in many cases it is easier
to change and extend a product in the software world, especially in case of

5

2 Foundation

games [49]. The game industry has discovered this and actively supports the
creation of new content by the community, for example in the Steam Community
Workshop for games like Skyrim [32].

As most games are proprietary, mods can only be created by utilizing the
provided API, because changes to the game engine are not easily possible [17].
If there is no API or the API functionality is limited, modders have no chance,
at least at first sight.

In some games though, the desire to make changes to games is so immense
that extended means are used: The community then creates a modding API
themselves by reverse engineering and extending the game engine. This was
done for example for Minecraft [6] (Minecraft Forge [29] and Sponge [30]) or
Dwarf Fortress (DFHack [16]).

With this approach, even though the game publishers did not intend it, any
game can be given a modding API, even if this means considerably more effort
than having a proper interface in the first place [21][32].

2.3 Database

A database is software for storing organized collections of information. Today,
they are crucial for information processing to perform fast storage and retrieval
of data. There are several approaches to the concept of a database, mainly
differing in the possible data structures and organizations (e.g. key-value,
graph, objects, tables) [33][24].

Database systems strive to comply with the so-called ACID properties, which
describe that a database shall follow: Do only atomic transactions (as described
below), stay consistent so that an invalid database state is never reached, isolate
multiple clients so their transactions don’t interfere and guarantee durability so
that the database state is not affected by crashes or power loss [19].

To achieve atomic changes to stored values, databases perform transactions.
A transaction stores one or many operations to perform on the records, and
the database system guarantees that either all those changes or, in case of any
problem, none are committed, leaving the records unchanged. To achieve this,
two approaches are popular: “write ahead logging” creates a list of changes
to be done, and when no more changes are to be done, the database is locked
and the list is traversed. In case of conflicts, the list is walked backwards and
the changes are undone, until the original state is reached again. The other
approach is “shadow paging”, where the records to be changed are copied,
and changes are then performed on this copy. When problems are detected,
this copy is deleted and the previous state is restored. Otherwise, the copy is
installed as the new state [19].

6

2.4 Inheritance

2.4 Inheritance

Inheritance is a well-known concept performed deliberately (e.g. by inheriting
a family item) or in biology/genetics (e.g. by inheriting eye color) [39].

The same concept, that a parent passes down something to its children, was
initially invented for the SIMULA programming language [14]. In object oriented
programming, classes are used to encapsulate several values to a logical group.
A new class can then list parents to gain their features as well. The subclass
possesses all properties of its “base class”, but can override or customize any
behavior [54]. This allows an incremental approach of building blocks, where
each refinement can be done as another subclass [8]. It is possible to have
an abstract base class, which declares that some property or method will be
there, but provides no actual value. That way, it forces that some subclass
implements the missing values before it can be used. With abstract classes, a
software can assume that a subclass is structured in a predictable way, and
can do computations with this assumption, without knowing the effective
implementation first [23].

When it is allowed to inherit from multiple parents, the “diamond problem”
arises [11]. The problem stems from the ambiguity of which parent’s method to
choose in a situation like illustrated in figure 2.1. When B and C both override
the same property of A, which one shall be chosen in D: The variant of B or the
one of C? Is A contained once or twice in D [8]?

A

B C

D

Figure 2.1: The inheritance diamond

A possible solution to this ambiguity is the C3 linearization algorithm, which
turns the inheritance graph of some class into a predictable list. The linearization
for a class is calculated recursively by traversing the inheritance graph [2]. The
C3 linearization is used in Python for its method resolution order [43].

The C3 linearization calculation works as follows [2]:

calculation of linearization of class cls(a, b, ...)
c3(cls) = [cls] + merge(c3(a), c3(b), ..., [a, b, ...])

The result of the linearization is combined by the class name itself and the
merge function. The merge function takes lists as its arguments, and the lists

7

2 Foundation

are created from recursive linearization calls to C3. The recursion is terminated
when a class with no parents is linearized.

The merge function takes the first head element of all its arguments (which
are lists) which is not present in any tail of all those lists. The head element is
the first entry of a list, the tail are all remaining elements. If a head element
missing from all tails is found, it is put into the results list, and it is removed
as head element from all other lists. This is repeated until all lists of the merge
function are empty. If none of the heads of those lists is a candidate (as each
appears somewhere in a tail), no linearization is possible and the algorithm
aborts.

In example 2.1, we had 4 classes, defined as A, B(A), C(A) and D(B,C). The
linearization of D with C3 is calculated as shown in Listing 1.

recurse into parents
c3(D) = [D] + merge(c3(B), c3(C), [B, C])

c3(B) = [B] + merge(c3(A), [A])
c3(A) = [A] + []

c3(B) = [B] + merge([A], [A])
c3(B) = [B, A]

c3(D) = [D] + merge([B, A], c3(C), [B, C])
c3(C) = [C] + merge(c3(A), [A])

c3(A) = [A] + []
c3(C) = [C] + merge([A], [A])
c3(C) = [C, A]

c3(D) = [D] + merge([B, A], [C, A], [B, C])
now, the real calculation
c3(D) = [D] + merge([B, A], [C, A], [B, C])
c3(D) = [D, B] + merge([A], [C, A], [C])
c3(D) = [D, B, C] + merge([A], [A], [])
c3(D) = [D, B, C, A]

Listing 1: Example of C3 linearization

Each indentation level means one level of recursion to calculate the nested
invocations of c3(B) and c3(C).

The result list [D, C, B, A] means that when looking for a property, these
classes will be queried for this in that list’s order. It is also possible to use this
list in reverse for aggregations: Starting at A, data flows down to B, then to C
and is collected at D [2].

2.5 Language Oriented Programming

“Language oriented programming” means designing a language around the
problem one is trying to solve, rather than adapting existing general purpose
tools for the problem. A domain specific language is created to fit its purpose.

8

2.5 Language Oriented Programming

The advantage is that such a language may be very elegant for the specific goal
it is designed to solve, but it is unsuitable for applications out of its scope [61].

The nyan language is domain specific, following this approach. The problem
is to provide an extensible, type-safe mod API, which can handle inherited data
structures and can track and revert changes over time.

9

3 Related Work

There have been many attempts to the problem of run-time configuration. If the
configuration of an application was not changeable at runtime, all parameters
had to be hardcoded, thus requiring recompilation of the code. Even program-
ming languages like Python can be seen as a form of runtime configuration,
as their virtual machine (VM) (the interpreter) stays the same and the Python
programming language is basically a behavior configuration for the VM [10].

A common approach for run-time configuration storage is the usage of a gen-
eral purpose markup language, such as YAML. If important features are missing,
more domain specific languages such as QML for graphical user interface (GUI)
creation were created.

3.1 YAML and JSON

JSON aims to be a fat-free alternative to XML and is a subset of the ECMAScript
programming language [13][9]. It provides basic syntax to store nested key-
value pairs, lists with numbers, strings or boolean values. It does not allow
any value typing, although types can be expressed as string literals and type-
checked by an external framework like JSON schema [18]. JSON does not
provide a built-in document structure and does not allow comments [9]. An
example of JSON is presented in Listing 2.
YAML is another popular data storage format, which is a superset of JSON,

focuses on feature-completeness to express native data structures and still
remain human readable. It builds on the lessons learned from XML and tries to
be simpler with more built-in types [4]. YAML allows typing for data fields, and

{"Image": {
"Width": 800, "Height": 600,
"Title": "Bengal Cat",
"Thumbnail": {

"Url": "http://magic.cats/image/cute.jpg",
"Height": 125,
"Width": 100

},
"Animated" : false,
"IDs": [116, 943, 234, 38793]

}}

Listing 2: Example of JSON code

11

3 Related Work

data fields can reference another, therefore YAML documents are data graphs.
YAML does not provide a built-in data schema validator, external tools have to
be used. Example code is provided in Listing 3.

sequencer protocol for material work

- step: &step0 # defines anchor label &step0

device: CNC 9000
tool: drill 5.4
path: [12, 234, 23, 10]
speed: 530

- step: &step1
instrument: CNC 9000
tool: grinder 42
path: [0, 400]
speed: 90

- step: # reuse &step0, override the path
<<: *step0
path: [50, 321, 0, -31]

- step: *step1 # completely reuses &step1

Listing 3: Example of YAML code

YAML can also represent hierarchical data structures, but aggregation logic
and patching is missing in its design. It can share and override keys with
its “merge keys” feature, but there is no way to extend or modify the values
by operators. Hence, to add operators in YAML, one would have to declare a
convention to embed operators as strings into keys: property increment
: value could be written instead of property += value. The merge-
keys feature can’t be used for this though as the key-name is different then.
This means that a single member must be represented by multiple key-values,
where one entry is for the name, one for the operator and one for the value.
The aggregation logic to evaluate the operators then has to be implemented
manually because YAML is not designed for such a use case.

YAML and JSON both are pure data description languages where all the data
handling is left to the application reading this data. Schema validations are
only possible with external tools. Their ability to express a data interface which
can then be used and overlayed by independent data packs is not built-in and
has to be interpreted by the application. Modification of values is not built-in
as there is no math operations or history tracking.

12

3.2 QML

3.2 QML

QML is a declarative user interface (UI) markup language for QtQuick [46],
which is a software development framework from Qt [47].

It is designed to allow the easy creation of interactive applications and de-
scribe its components interactions and relations. The default UI building blocks
are provided by the QtQuick modules, an example is in Listing 4.

import QtQuick 2.9

Rectangle {
id: canvas
width: 250
height: 200
color: "blue"
Image {

id: logo
source: "pics/logo.png"
anchors.centerIn: parent
x: canvas.height / 5

}
}

Listing 4: Example of QML code

The QML language has a syntax similar to that of CSS and the structure of
JSON, and it embeds JavaScript for calculations and additional customiza-
tions. Nested declarations are influenced by their parent implicitly (in the
example, the image is placed inside the rectancle), which can be further cus-
tomized (e.g. the x positioning relative to the canvas height).

This means that properties can be bound to the value of another object via its
special id property, thus the data model is a graph. QML also provides built-in
support for transitions between property changes (e.g. smooth animations and
the like), the “keyframes” of the animation are set up with explicit “states”.

As QML is a part of the Qt-framework, it cannot be used without it. Although
new QML-types and their available members can be added through its C++-API,
new types can’t be added at runtime, so mods in a scripting language would
not be able to add new types for new API functionality.
QML is primarily designed for UI building, not as a general purpose data

interface. Combination and linking of all the elements in a QML document can
be done easily, but the format is not designed for the extension and modification
of a document at runtime.

A QML document has no schema verification although all the object properties
have types. The types can be declared and activated from the Qt-C++-API, or
new combined types are created within QML documents itself [15].

13

3 Related Work

3.3 Mod APIs

Many successful games provide a mod API or the community has created an
inofficial one. In this section, some of the typical approaches to such interfaces
are presented.

There are multiple approaches to such an API: A code-only interface, a data-
only configuration or a hybrid approach. Code interfaces operate by registering
functions as hooks into specific triggers, provided by the application. Data-only
configuration is very common for all kinds of applications, in most cases this
is done through key-value based configuration files (e.g. .ini or .yaml). A
hybrid approach is the combination of both, where configuration files are used
to make changes to the application behavior and also to change or register
function hooks. The overall feature set depends on the interface: If there is no
suitable hook for a function or no configuration variable, then a mod cannot
perform the desired change.

The main reasons for not allowing to add new code to an application is the
increased complexity of the extension API and code execution rights. If only
data variables can be changed, the codebase is self-contained and no third party
code can be executed on purpose. If third-party code is desirable, either reviews
of this code or a proper sandbox for untrusted code is required.

3.3.1 Minecraft Forge

Minecraft is a cube-based open-world sandbox game [41]. The current state-
of-the-art Minecraft API is Forge [29], which is used and configured through
Java, thus a pure code API. New code is registered with the API to Minecraft
by Forge, through its RegistryEvents. New items, blocks and biomes can be
created and then registered easily.

Forge can inject values into prepared members of Java classes, so mods can
change fields of other mods, if those are designed for it.

Forge is not created by the Minecraft developers themselves, but instead is a
community effort. They have spent much time of reverse-engineering Minecraft
to inject their hooks at the appropriate places, so that mod developers then can
rely on Forge, which adds their code at the right place in Minecraft itself [29].

3.3.2 OpenTTD NewGRF

OpenTTD is a open-source reimplementation of Transport Tycoon, which is a
transport business simulation game [1]. The OpenTTD engine can be extended
with data from their “New Graphics Resource File (NewGRF)” files [37]. A
NewGRF file can be created from the NewGRF Meta Language (NML). It is a
custom language with predefined blocks, which are provided by the OpenTTD
engine. The statements are a mixture between declarative statements and code,
which is then bundled into a .grf file [38]. OpenTTD has strong limitations of
grf compatibility, conflicts can easily occur [37]. Replacements with NML can be

14

3.3 Mod APIs

done with the explicit replace statement, which is a predefined block. Com-
ponents of another grf can be disabled requiring target item identifiers [37].
The grf file format and available commands in NML are explicitly designed for
Transport Tycoon, so it is not suitable for other game engines [34].

3.3.3 Skyrim Creation Kit

Skyrim is an open-world role playing game in the Elder Scrolls universe [55].
Skyrim has built-in modding capabilities with its “Creation Kit”. It simplifies
the creation of mod packs because the whole work flow and all possibilities are
supported by its interactive GUI [50]. Creation Kit is a hybrid mod API, which
allows data changes and to attach scripts in the Papyrus scripting language [52].

There are interactive dialogues that provide input elements for every possible
action for the current object, script or asset. Bethesda provides tutorials on
the Creation Kit wiki [51]. All the information about additions and changes is
stored in .esm and .esp files, the former is a “master file”, the latter a “patch
file”. These files contain records in binary format, designed to be edited with
the Creation Kit. There have been some attempts to create replacement tools,
for example “SkyEdit” [58].

The “patch files” may introduce new records or reference to existing ones
to change properties. Records are simply overwritten, depending on the load
order of the .esp files. The plugin loaded last has highest priority, when the
same record is modified by multiple mods [59]. Although the modding utilities
provided by the Creation Kit are very powerful, it is non-free software and is
designed for the Creation Engine only [17]. Therefore it is not possible to reuse
the tools for other games, except by reusing the ideas and implementing them
again.

15

4 Design

The overview of components needed for the operation of nyan can be seen in
the overview Figure 4.1. Files written in the nyan language are used as input.
Their content is processed through a lexer and parser and is then stored in the
nyan database. The database can be accessed over the nyan-API.

There are two public interfaces to the nyan framework: The nyan-API to in-
teract with the nyan database and the input and configuration through records
written in the nyan language.

This chapter will describe the concepts designed for the nyan framework.
First, the overall idea is presented in Section 4.2, then the components and their
roles are elaborated.

nyan
language nyan lexer

nyan
parser

nyan type
database

nyan value
database

nyan
C++ API

Figure 4.1: Overview of components

4.1 Engine and Content Separation

A game engine (see Section 2.1) is an application that provides the framework
for building a game. The game content (its unique artwork, characters, sounds,
levels, etc.) is independent from the engine and can be provided in different
formats.

The format of that content data is defined by the engine, as well as the
features it is able to simulate and display. The implemented algorithms define
the feature set of the game engine, which types of games it is suitable for, the
hardware requirements and the overall behavior.

The nyan language is designed to be used as one possible content format,
which is provided to a game engine through the nyan database. The game
engine loads its data schema into the nyan database. The schema describes the
allowed data structures and value types. The game engine defines the schema

17

4 Design

so it can later access and update records by the structure, names and types it
has declared through it.

As the nyan language is used for describing the engine configuration declar-
atively [27] so it does not provide the possibility to write code, there is no need
to sandbox it and prevent code execution.

The game engine is responsible for setting up the data schema, loading data,
changing data and handling query results obtained from the nyan-database. In
particular this means the engine is responsible for the load order of possibly
conflicting records: If changes are planned to be done on the same data record,
the engine has to decide about the order. In practice, this is mainly determined
by the game logic implemented in the engine. The progressing in-game-time
and world state can provide the correct order for changes in the nyan database
e.g. power upgrades.

It is important to keep in mind that the nyan framework merely provides a
configuration tool and alterable state storage, all the algorithmic logic has to be
implemented in the application that embeds the nyan framework.

4.2 Concept

The overall concept of nyan revolves around the possibility to access and mod-
ify the stored data at any time with little possibility for conflicts or ambiguity
so that multiple change requests can be active at once.

The nyan database stores a value for a key. A key can be accessed by a
human-readable name, to which alterable data can be assigned as a value. The
idea is now that a result to a query of a key can be a combination of values,
depending on how the keys are arranged. The database also stores the history
of changes for to values. By the usage of a custom timestamp, any point in this
history can be queried.

The nyan language is designed to be human read- and writable as it is the
primary entity content creators will have contact with. This means it must be
read and written intuitively.

In order for the application to access data in the database, data has to be
organized according to a schema provided by the application. The schema
defines the permitted structure and value types of data records. Hence, the
schema must be loaded into the nyan database by the application before con-
tent can be added through the nyan-API. The published data schema equals
the “content-API” of the application: Configuration can be performed on the
structures and types defined by the schema.

Run-time code plugins for the engine may require schema extensions, for
example for adding data fields to existing game objects so that they can store
properties accessed by a scripting language.

The concept used for the nyan framework is to describe both the schema and
content in the same language as the data records, which is the nyan language.

The approach for this unification is the storage of nyan-objects. Such an object

18

4.3 Input Language

stores an arbitrary number of members, which are key-value pairs. A member
always has a data type, which restricts the kind of values to be allowed. Because
a nyan-object simultaneously declares data types and their values, they are a
unification of the concept of a “class” and an “object”.
nyan-objects are organized in namespaces, which are created by the directory

hierarchy of files where they are defined in. nyan-objects can be identified
uniquely through their fully qualified object name (fqon), which is the combina-
tion of the directory structure and their object name. A fqon allows to reference
objects unambiguously from independent mod projects. Namespaces and fqons
are further presented in Section 4.6;
nyan-objects can inherit data from other objects. This inheritance allows

creation of a data inheritance graph, where objects can inherit data from other
objects and apply modifications to it. The modification is done by an operator
and a value. This is a form of object inheritance [12].

When a member value of an object is queried, the result is determined by
walking down the inheritance tree of the object hierarchy, starting at the root
object(s). On the way, modifications are accumulated. This mechanism allows
changes made to parents to be propagated to all of its children.

Modifications to the data are stored in the database in the form of patches. All
of the possible changes are therefore accessible by name, and patches can change
patches. The patch applications are triggered by the game engine, possibly
according to its implementation of initial data loading, game initialization,
game logic, etc.

All the modifications are tracked on a timeline, so that rollbacks to any
previous state are possible. This is built into the design so predictions of the
game state can perform changes in the nyan-database, and if those are no
longer valid, one can go back to a previous point in time.

These features were chosen to allow easy modding and integration for games.
Data packs can contain game content, stored in a directory hierarchy of .nyan
files. Those data packs are essentially a mod pack for the engine, it provides or
changes the configuration for the engine. The type system requirements of data
eliminates errors during runtime of the game, as most of the problems can be
detected at load-time of the mod. When this mod is activated (load order, point
in time) has to be determined by the engine.

4.3 Input Language

The input language, called the nyan language, has to be portable and human
readable. The storage format is plain text, so that they can be edited with
arbitrary text editors. They could be loaded and presented in a fancy GUI, but
such a program is not required.

The language is designed to be very compact, but readability is given priority
over memory consumption. A major goal was to create the language in such a
way, that data definitions and changes can be expressed without redundancy.

19

4 Design

The main goal was to create it in a way that it is editable intuitively. For that, a
syntax similar to Python [43] was chosen. The style was adapted for the concept
of nyan, but remained “pythonic” [45]. Hence, it should be easy to read and
write even for people with little or no programming experience.

Python’s whitespace indentation is relevant for stating code blocks [42], this
is also true for nyan.

In the following sections, relevant language components are introduced. This
includes the definition of nyan objects, the allowed data types, the inheritance
declarations, operators and value assignments and the definition of patches.

4.3.1 Object Definition

A nyan-object is a named group of key-value pairs. The name of the group
is the nyan-object name. Key-value pairs assigned in this object are called
members. Each initial definition of a member must be annotated with a type.

The member type is defined after the member name with keyname : type
= value. The basic structure for an object definition is illustrated in Listing 5.

ObjectName():
member_name : TypeName = value
another_member : int = 123
member_without_value : SomeType
...

Listing 5: Basic definition of a nyan-object and its members

The order of members does not matter and there must not be two members
with the same name in an object. A member may have no value. An object
containing a member with no value is called abstract. This is a way of forcing
derived objects to specify a member value. This mechanism will be elaborated
in Section 4.3.4.

Objects can also be defined within another object. The inner one is a nested
object, and can contain nested objects itself. The purpose of nested objects is
to allow further grouping, which is also supported by the naming schema for
them: The name of a nested object is a combination of the name of its parent and
the nested object name. This namespace creation and its reference procedure
are presented in Section 4.6

4.3.2 Types

Types in the nyan language are introduced enable static error analysis. The
allowed data types for a member are either primitive, collection or object. Primi-
tive and collection types are built into the language, whereas object types are
defined by the user.

20

4.3 Input Language

Built-in primitive types are present in many programming languages, for
example in Python [44]. The available primitive types in the nyan language are
presented in Table 4.1.

Type Example Description
text "random text" Immutable string constant
int 1337 Numeric type for integers
float 42.235, inf Numeric type for floating point numbers
bool True, False Truth type for boolean operations
file "./name" Filename, relative to the file this value is de-

fined in. If the path is absolute, returned as-is.

Table 4.1: Available primitive types in the nyan language

The collection types allow to unite multiple values of the same type in one
container. Valid collection types are set and orderedset. Collections have a
element type, which is declared after the collection type. Example definitions
of members with primitive and collection types are provided in Listing 6.

SomeObject():
some_member : text = "some boring string value"
another_member : int = 42
third_member : float = 123.456
fourth_member : bool = True
fifth_member : file = "./directory/graphic.png"

set_member : set(int) = {13, 37, 42, 13, 42}
orderedset_member : orderedset(text) = o{

"this", "is", "this", "a", "test"
}

Listing 6: Primitive and collection member types

The difference between set and orderedset is only observable in query
results. An ordered set strictly keeps its element order, elements that already
were in the set are moved to the end when a new element is inserted. The
resulting value of orderedset member from Listing 6 therefore is ["is",
"this", "a", "test"], the value of set member is {42, 13, 37} but
the numbers could also be in any other order. The right hand side value also has
a different creation, a set value is created by {...}, an orderedset value is
created by o{...}. A set can also be assigned an ordered set value, but not the
other way round, while dropping the order of elements is no problem, creating
it when none was intended would be ambiguous.

A list type was omitted deliberately from the design to avoid the complex-
ity needed for list combinations. If a sensible way of merging lists is found, lists
can easily be added to the nyan framework later.

21

4 Design

The third possible type for a value is a nyan-object. This means an object
can be used as a value for a member or in a collection of values in any other
object. The type name of a nyan-object is its object name. If an object B inherits
from an object A (as presented in Section 4.3.3), then B is also of type A, and can
therefore be used as a value for a member of type A.

There are two built-in object type names: Object and Patch. The former
denotes any nyan-object to be stored, the latter specifies any patch object that
can be stored. Patch objects will further be explained in Section 4.3.5. An
example of the application of objects as types can be seen in Listing 7.

ValueObject():
funny_member : text = "not funny"

TestObject():
can hold any object as value:
generic_member : Object = ValueObject
can only hold ValueObjects:
boring_member : ValueObject = ValueObject

Listing 7: Primitive and collection member types

4.3.3 Inheritance

nyan-objects can inherit from one or multiple parent objects. Inheritance is
transitive, so a child object is of type of all its parent objects, and the parents of
those, and so on. An example for the syntax to declare inheritance relations is
presented in Listing 8.

ParentObject():
...

ChildObject(ParentObject):
...

RandomObject():
...

GrandchildObject(ChildObject, RandomObject):
...

Listing 8: Object inheritance syntax

Inheritance is used to provide a child with all the members of its parent.
This mechanism enables reuse of parental base values as well as parent-relative

22

4.3 Input Language

modification of members. How the value can be updated depends on the type
of the member. Each type has a number of allowed operators, presented in
Section 4.3.4. A child object therefore gains access to all members of all parents
and can build upon them by operations specified by the member type.

There can be more than one parent for an object, which allows multiple
inheritance, as presented in Section 2.4. The problems introduced with this
mechanism are discussed in Section 4.5.

Inheritance allows to assume that a child object has a member of a parent: The
member was inherited and therefore is also present in the child. An illustration
can be seen in Listing 9, where each ValueDemo.member set entry can be
queried for the value of a, it is prescribed by BaseObject.

BaseObject():
a : int = 0

ChildObject(BaseObject):
a = 1
b : int = 10

OtherChild(BaseObject):
a = 2
c : int = 20

ValueDemo():
member : set(BaseObject) = {ChildObject,

OtherChild}

Listing 9: Subtyping used for object values

4.3.4 Values and Operators

Each member in an object has a type, as described in Section 4.3.2. When
inheriting (see Section 4.3.3), the value of the current object can be defined
relatively to the parent object. This means that when the current object’s member
value is requested, it is constructed by evaluation of the parent’s member value
followed by the application of a type-specific operator and value. All member
types support the assignment operator =. Other allowed operators are listed in
Table 4.2.

Objects can only be assigned as values if they are not abstract (that is,
they define or inherit a member that has no value) and their type matches
the member type. The type constraint guarantees access to members defined
by that object or any of its children. Members do not vanish, so they can be
accessed from any child object. As an object used as value must not be abstract
guarantees, a request to the member value can be done, and in turn forces the

23

4 Design

Type Operator Description
any = Value override
text += String appending
int and float +=, *=, -=, /= Arithmetic operations
bool &=, |= and and or operation
file = "./moist/cake" Assignment only

set(type)

= {value, val, ..} Assignment
+= {..}, |= {..} Set union
-= {..} Element removal
&= {..} Set intersection

orderedset(type)

= o{value, val, ..} Assignment
+= o{..} Add values to end
-= o{..}, -= {..} Element removal
&= o{..}, &= {..} Keep only those values

Object = Assignment

Table 4.2: Operators for each type

object to be initialized. That way a content API (i.e. abstract objects) can force
values to be set.

This also allows that the API is further refined, for example by a mod that
introduces an extension to an existing API, and still forces any usage of it to fill
in values that the behavior/engine code can then use for the game simulation
or any other component to be configured.

4.3.5 Patch Definitions

Values would remain the same forever if there was no way to change them.
In order to modify them, nyan uses patches. A patch is a nyan-object which
specifies changes to members of another nyan-object, which is its patch target.
As a patch is a nyan-object, it can be target of another patch. Hence, the system
allows to create mods for mods.

The activation or application of a patch is triggered via the nyan-database-API
(see Section 4.9), thus the decision is not done in the nyan framework, but in
the software that uses it. One patch can be applied multiple times, then it will
perform all the changes once again.

A patch targets exactly one nyan-object. This target can not be changed. If
the target could be changed, type checks would need to test for soundness of
value changes in anticipation of a different target as well.

It is possible to apply the patch to a child of the targeted object, though. It is
guaranteed to possess all the members and types of the original target.

The patch target is written down as <target> in the object definition. An
example is shown in Listing 10. An object which defines a target or inherits one
from a parent is a patch.

24

4.3 Input Language

RandomObject():
random_value : int = 0

SimplePatch<RandomObject>():
random_value += 1

Listing 10: Patch definition

A patch P that targets object A is similar to an object B that inherits from A:
If P and B have the same modifications for A, then B will evaluate to the same
values as A will after the patch was applied. After the P-application, B’s values
will of course be updated as well.

An illustration of this is shown in Listing 11, where B.random value ==
15. The evaluation of A.random value will be 15 after P was applied. As B
is inheriting from A, which was just changed, B.random value == 20. Thus
a patch behaves like inheritance, except the target is updated to the new value.

A():
random_value : int = 10

P<A>():
random_value += 5

B(A):
random_value += 5

Listing 11: Update logic similarity between inheritance and patching

A patch can inherit from any number nyan-objects (including other patches)
to specialize it further. A patch target can only be specified if no (transitive)
parent did specify a target object. All children of a patch will implicitly affect
the same patch target. That way, patches can be further specialized but the
target can’t be changed.

When a patch is applied, all members present in the target object are updated
according to the changes of the patch. The patch is linearized first (see Section
2.4), and the members are updated for each parent in the linearization result.
That means if the patch has parents, the changes requested by them are applied
first, the changes of the patch afterwards. This approach implements the intu-
ition about further specializing patches by inheritance: The most specialized
patch is applied last.

A special feature of patches is their ability to change the inheritance parents
of a nyan-object. This is introduced to allow the injection of a parent in between
an existing parent-child relationship. This is denoted by the [NewParent+,
+OtherNewParent, ...] syntax. The position of the + specifies if the object
is added at the front (Name+) or the end of the current parent list (+Name).

25

4 Design

If the target has parents [A, B] and we apply [+C, +D, E+], the result is
[E, A, B, C, D]. The linearization must be valid after the parent addition
by the constraints presented in Section 2.4. In Listing 12 an example for the
mechanism of injecting a new parent is provided.

RootObject():
magic_value : int = 9001

ChildObject(RootObject):
magic_value -= 1

InjectedObject(RootObject):
magic_value -= 7661

InjectIt<ChildObject>[InjectedObject+]():
magic_value += 2

Listing 12: Inheritance modification by patch

The initial query result of ChildObject.magic value == 9000. When
the InjectIt-patch is applied, InjectedObject will be the new direct par-
ent of ChildObject. The value 1 of ChildObject.magic value is also
modified. It is increased by += 2 to 3. The resulting member operation there-
fore is -= 3. When ChildObject.magic value is evaluated again, the
result is 9001− 7661− 3 == 1337.

Besides values, patches may also override operators in the target object. The
example showed the update of value 1 to 3 by +=, its operator remained
the same though (-=). To allow the override of the operator and member
value, @ is used. It instructs to replace the operator and value of the tar-
get object to be replaced by the operator and value in the patch, that is, the
part after the @ is copied, as illustrated in Listing 13. When FixOperator is
applied, ChildObject.magic value will evaluate to 9001 + 999 = 10000.
When FixOperatorFix is applied and FixOperator is applied after that,
FixOperator will have stored @*= 2, and therefore updated ChildObject
to store *= 2. Hence, ChildObject.magic value evaluates to 9001 ∗ 2 =
18002.

The number of @ modifiers is limited by the depth of the patches: One @ can
only be added if the target object is a patch. In the example, the maximum
number is 2, if there were more @ modifiers, the non-patch ChildObject
would get a leftover @.

Patches are applied in transactions, which are further described in section
4.8. If the addition of parents induces linearization problems (see 2.4), the
transaction will fail. The only other way to avoid those failures would be
prohibiting inheritance changes at runtime: We cannot foresee the order or
effective activation of patches. They may be valid if another patch was never

26

4.3 Input Language

BaseObject():
magic_value : int = 9001

ChildObject(BaseObject):
magic_value -= 1

FixOperator<ChildObject>():
magic_value @+= 999

FixOperatorFix<FixOperator>():
magic_value @@*= 2

Listing 13: A patch can replace operators

activated, but a failure occurs if it is applied. An example for such a construction
is in Listing 14, where either A or B can be applied, but after that, application of
the other is impossible.

ObjA():
...

ObjB():
...

A<ObjA>[+ObjB]():
...

B<ObjB>[+ObjA]():
...

Listing 14: Mutual exclusion of patch applications

The avoidance of such conflicts is the responsibility of the creators: Authors
of mods have to synchronize themselves to prevent conflicts.

All patches are checked for sanity after all objects are loaded. The type
compatibility for their changes are verified with the target object.

Patches may add new members to their target, but this cannot be anticipated.
Therefore, no other object can assume it was added. If an unknown member is
modified, the patch can’t be loaded. A newly-added member is unknown to
other patches.

27

4 Design

4.3.6 Language Grammar

The nyan language can be parsed with the grammar depicted in Listing 15.

〈alpha〉 ::= ‘a-zA-Z ’

〈alphanum〉 ::= ‘a-zA-Z0-9 ’

〈identifier〉 ::= 〈alpha〉 〈alphanum〉*
〈namespace〉 ::= 〈identifier〉 (‘.’ 〈identifier〉)*
〈number〉 ::= ‘-’? ‘0-9’+ (‘.’ ‘0-9’+)?

〈operator〉 ::= ‘@’* (‘-+*/|%&’ ‘=’? | ‘=’)

〈file〉 ::= ((〈import〉 | 〈object〉) \n)*

〈import〉 ::= import 〈namespace〉 (as 〈identifier〉)?
〈object〉 ::= 〈identifier〉

(‘<’ 〈namespace〉 ‘>’)?
(‘[’ (〈parent-add〉(‘,’ 〈parent-add〉)*)? ‘]’)?
‘(’ (〈namespace〉(‘,’ 〈namespace〉)*)? ‘):\n’
INDENT (〈obj-content〉\n)+ DEDENT

〈parent-add〉 ::= ‘+’ 〈namespace〉 | 〈namespace〉 ‘+’

〈obj-content〉 ::= 〈identifier〉 ‘:’ 〈type〉
| 〈identifier〉 〈operator〉 〈value〉
| 〈identifier〉 ‘:’ 〈type〉 〈operator〉 〈value〉
| 〈object〉 | ‘...’

〈type〉 ::= 〈namespace〉 | ‘set(’ 〈namespace〉 ‘)’ | ‘orderedset(’
〈namespace〉 ‘)’

〈value〉 ::= 〈identifier〉 | 〈number〉 | ‘o’? ‘{’ 〈value〉 (‘,’ 〈value〉)* ‘}’
‘’’ ANY ‘’’ | ‘"’ ANY ‘"’

Listing 15: Grammar for the nyan language, the entry is 〈file〉

Special handling is needed to figure out when INDENT and DEDENT are
recognized. Those tokens have to be emitted if the indentation of the line
changes, the level is designed to be exactly 4 spaces per level. This means that
the token stream must already track the indentation level whitespace.

The value handling also deserves some special attention, as only two line
wrap rules are allowed. If a line gets too long, it is usually continued in the
next one. The indentation of wrapped lines and the indentation of the closing
bracket is enforced by the lexical analysis in order to guarantee a uniform visual
appearance. Examples for this are provided in Listing 16.

28

4.4 Type System

IndentDemo():
good: no newline after {, content aligned at {
member : set(int) = {1, 3, 3, 7,

4, 2}

good: newline after {, content indented +4
orderedmember : orderedset(int) = o{

1, 2, 3, 1,
2, 3, 2

}

wrong: indent of 9001 not aligned at {
nope : set(int) = {2, 3, 5,

9001, 17,
}

wrong: indent of } not at level of 'nope'
nope : set(int) = {

1, 2, 3, 4}

Listing 16: Indentation enforcement

4.4 Type System

Although values can be changed with patches (see Section 4.3.5), value types can
never change. Because of that, the type system is independent of the database
state. It is only provided with new information when nyan-objects are loaded.
Type compatibility is checked during a request to load data into the database
storage.

All of the type information handled by nyan is stored at runtime. The
application that exposes its API feeds this schema information to nyan at every
startup. This allows the schema to be extended by mods which provide new
scriptable features.

A nyan-object’s type name is its object name. Types of object members must
be declared when a member is initially created. This type is reused for all
patches and child objects that also operate on that member. When a child object
is created, all the types of used but not initially declared members are inferred
from the linearized inheritance (explained in Section 2.4). To obtain the type of
a member of a patch, its originating member must be found by following the
patch target, which in turn might be defined in a parent of the current object (as
patches can also inherit). The procedure is to linearize the parents and in each,
try to find the initial definition of the member. If there are multiple results, the
conflict needs to be resolved in the manner Section 4.5 explains.

Once the member type is found, the operator and value are checked for

29

4 Design

validity. The allowed operators are listed in Table 4.2.
Because the schema is expressed through (optionally “abstract”) objects with

type information, the application can assume that queries to those object and
their members will work and are type-correct. In practice, an application can
provide an API like in Listing 17.

API from application
ConfigAPI():

Picture():
alt_text : text = ""
path : file

View():
background_image : Picture
name : text

volume : int = 50
current_view : View

API usage from an application plugin
HomeScreen(ConfigAPI.View):

CatPicture(ConfigAPI.Picture):
alt_text = "cute kittenz"
path = "./assets/cute.png"

background_image = CatPicture
name = "Main screen"

Activation of the home screen
ActivateHome<ConfigAPI>():

current_view = HomeScreen
volume = 80

Listing 17: API guarantees type safety

This API forces values to be set by the API user (path, name, current view).
Otherwise, an object cannot be used on the right hand side, as explained in
Section 4.3.4.

The application can now query ConfigAPI.volume, the result is guaran-
teed to be an int, and it will have value 50. ConfigAPI.current view will
have no value at first, the value will be assigned once the application decides
that the ActivateHome-patch is activated.

Afterwards, the value of ConfigAPI.volume is changed to 80 and a query
to ConfigAPI.current view results in a nyan-object of type ConfigAPI.View.
On that object, it is possible to query for object.name (which is of type text)
and object.background image (which is a ConfigAPI.Picture-nyan-
object), which can in turn be queried for it’s alternative text (alt text) and
the image path (path).

Therefore nyan makes is possible to create a type-safe object-oriented config-
uration API.

30

4.5 Multiple Inheritance

4.5 Multiple Inheritance

The nyan language allows an object to inherit from more than one parent object,
this is called multiple inheritance [11][8].

Multiple inheritance is achieved by specifying multiple parents in a nyan-
object definition. It is then composed of multiple sources, and it is possible to
add a parent at runtime through the patches (see Section 4.3.5) applied in trans-
actions from Section 4.8. An application of such a composition for openage
would be that of a deer, which is a Unit, Huntable and ResourceSpot.
To clarify which parent is meant for an overridden member, its name can be
prefixed with the object name, like in Listing 18.

Deer(Unit, Huntable, ResourceSpot):
explicit targeting
Unit.sprite = "./assets/deer.png"
Huntable.flee_type = DeerFlee

implicitly targets ResourceSpot.resource_type
resource_type = Food

Listing 18: Member name qualifications

Naming ambiguities can occur when multiple parents define a member with
the same name. The data structure is no longer tree-based but rather a graph.
There can be two reasons for a name conflict: Two independent objects declare
this member, or it originates from a common parent. An example for both
situations is shown in Listing 19.

Base():
setting : int = 0

Intermediate0(Base):
setting += 1
property : int = 10

Intermediate1(Base):
setting *= 2
property : int = 20

Independent():
setting : int = 100
property : int = 1234

Mixed(Intermediate0, Intermediate1, Independent):
setting += 3 # which origin is meant?
property += 5

Listing 19: Ambiguous member name due to multiple inheritance

31

4 Design

To resolve the conflict, the origin of the member is determined first. This
is done by walking over the parent linearization list. If there is only one
member definition (i.e. member name with its type), the member is from
a common parent (in the example, that would be Base.setting). If there is
more than one definition, the conflict can only be resolved by additional member
name qualification that prefixes an object where the member name is still
unique. In the example, both Mixed.setting and Mixed.property must
be qualified so the member origin is clear. In the example, Mixed.setting
must be specified as Base.setting in case this member was intended to
be modified. Mixed.property must be prefixed with one of Independent,
Intermediate0 or Intermediate1, depending on the desired target.

The conflict detection is performed for each object when they are loaded.
The linearization (see Section 2.4) of Mixed is [Mixed, Intermediate0,
Intermediate1, Base, Independent]. For each member, this list is
walked to gather objects which define a member with this name. For setting,
the result is [Base, Independent], for property the result is:
[Intermediate0, Intermediate1, Independent]

Since each list has more than one element, the conflict must be resolved by
selecting one element of each list as the name qualification prefix. This qualifi-
cation does not change the member value of the prefix object, instead this just
indicates which origin member is meant.

The inheritance mechanism in combination with patching can be used to
inject a new custom object in between existing inheritance hierarchies, which is
useful to add new members to existing objects, as illustrated in Figure 4.2.

A

B

⇒

A

BIns

⇒

A

Ins

B

⇒

A

Ins

B
(0) (1) (2) (3)

Figure 4.2: Parent object injection through multiple inheritance

In order to reproduce this example in nyan, the parent is injected by a patch
(see Listing 20). The Activate-patch is applied whenever the application de-
cides, for example when the plugins are loaded and initial patches are enabled.

Without the mod, state (0) is active. When the mod-nyan-data it is loaded,
the new object is just added and available in the database but is not yet used (1).
When a transaction with Activate is committed(see Section 4.8), (2) will be

32

4.6 Namespaces and Importing

original state
A():

...

B(A):
...

loaded by a mod
Ins(A):

...

Activate[Ins+]():
...

Listing 20: Injection of new parent through a patch

the active state. The linearization of this will result in (3), because C3(B(Ins,
A)) results in [B, Ins, A], which is the desired injection of a new “middle”
parent.

4.6 Namespaces and Importing

Namespaces in the nyan language are used for grouping object names and
directory hierarchies with files. They allow to organize data hierarchically on
your filesystem. A namespace is a list of name components separated by a dot.
A nyan file name implies its namespace. That means the filename must not
contain a “.” (except in the .nyan suffix) to prevent naming conflicts. This
namespace scheme is similar to the one used in Python [43]. The application
decides what the root of this namespace is. It may strip or add any elements to
a namespace if necessary, for example to transparently provide access to .nyan
files stored in a compressed archive. The application could prefix the identifier
of the mod pack to all the nyan-objects in it, so their references are unique.

For each mod pack, the application determines a filesystem root, which nyan
uses for its import base. The path, relative to this custom root, is used as the
first part of the unique namespace name. Object definitions in this .nyan-file
are prefixed with this namespace.

filename: unicornmod/units/fluffy.nyan
namespace: unicornmod.units.fluffy
Rainbow(): # top-level object

Goldpot(): # nested object
amount : int = 9001

Listing 21: fqon creation from filename and object

33

4 Design

An example for such a fqon-creation is in Listing 21. The full name of each
object is its “fully qualified object name (fqon)”, which can be referenced from
any other mod pack or from the application distinctly. In the example, this
would be unicornmod.units.fluffy.Rainbow.Goldpot.

This name is rather impractical for writing nyan-files, mainly because of its
length. Because of this, the referenced name is searched from the innermost
scope towards the namespace root until a matching object is found. Ambiguous
names are therefore resolved by picking the object name that is “closest” in
the current namespace, because namespaces towards the root are only checked
if no name matches for the current one. A referenced nyan object name can
therefore be shadowed by ambiguous replacements which have higher priority
in the search from the current namespace scope towards the namespace root.

The namespaces are not always available for reference, because they need to
be imported first. The reason is that this allows to follow all imports of files
so unknown files can be opened and parsed. Known files are not imported
again. Imports are done with the “import ...” statement, at the top level of
a .nyan-file:

import unicornmod.units.fluffy

It is possible to create convenience aliases of imported namespace names
with the “import ... as ...” statement.

This instructs the nyan framework to import the desired namespace and
assign an alias to it (right side), which expands to the left side when used. In
practice, this alias mechanism can avoid long fqons, as shown in Listing 22.

Candy(unicornmod.units.fluffy.Rainbow.Goldpot):
amount = 10

is the same as:
import unicornmod.units.fluffy.Rainbow.Goldpot as Pot

Candy(Pot):
amount = 10

which is also the same as:
import unicornmod.units.fluffy as fluffers

Candy(fluffers.Rainbow.Goldpot):
amount = 10

Listing 22: Import with custom aliases

Object inheritance can never be cyclic. A member of an object A may refer to
an object B which has a member pointing to object A. Cyclic value references

34

4.7 Database Views

are therefore allowed. The order of declared nyan-objects in a file does not
matter. An object name can be used even if it will be declared later in a .nyan
file. This works because object member values are always “pointers”.

The graph structure of available objects is loaded before their members are
assigned their values. The compatibility for the value type can therefore be
tested when the members are set up after the object type graph creation. This
means there are implicit forward declarations.

4.7 Database Views

In many competitive games there is a different game state for every player, each
team and the general game. For example, this can be required because an effect
for a team affects all players in it (team bonuses) but research done by a player
does not necessarily affect other players.

So it is required that teams and players have a distinct view on the database
state, but those views still depend on each other. The dependencies are a tree, a
possible example is illustrated in Figure 4.3.

Root

Team

Player Player

Player Team

Player Player

Gaia

one branch

Figure 4.3: Different state views for different players

In the nyan database, views are used to separate multiple change histories
that started from the same base state. A view always has either a parent view
or the root database state as its base.

Each view can store a different database state, but a parent view state change
will lead to a state change in its child views.

When a view is created, its state reflects the initial database state. The initial
state is the collection of all loaded nyan-objects, without any patches applied.

35

4 Design

New nyan-objects can only be loaded into the root database, all changes on
them can only be performed in views. When a change is committed through a
transaction (see Section 4.8), the data modifications are performed in the view.
The changes are also propagated to all depending views. A team bonus can
therefore be implemented as a set of patches that is applied in the view for the
team. All players in the team are subject to the change, other teams remain
unaffected.

Views are used for the storage of changes in the database. If the views don’t
depend on each other, they can operate completely separated.

4.8 Transactions

Transactions are used to perform changes in a database [19] (see Section 2.3). In
nyan, one or more patches are packed in a transaction so they are all activated
at once or, if errors occur, none of them is applied.

When a patch is added to a transaction, it is possible to customize the patch
target. A patch stores its target object already, which is used by default. The
custom target must be an object which is also of type of the original target. This
is required so the new target has all the properties of the default target.

A transaction must be created for a view (see Section 4.7), as only views can
hold state changes through patches. Additionally, transactions are performed
at a custom point in time.

The time specified for a transaction has several purposes: A modification
can be planned without having any effect before a specified point in time.
Transactions that are conducted after this point in time are dropped. If they are
still valid, the application must recommit the changes. If two transactions are
scheduled to happen at the same time, their changes are consolidated in the
order of their commits.

Each view has a separate transaction history, but a parent view will always
propagate the transaction to a child view. A child view can then add its own
transactions with a later timestamp, but once the parent commits to a timestamp
before that, the child’s transactions after this timestamp will be deleted.

The propagation mechanism can be refined, but it would still mean that
an earlier transaction must be taken as the base for transactions after that.
Currently, these have to be activated manually again, instead of being replayed
on top of a new base internally by nyan.

The mechanism of committing transactions at a predicted timestamp is used
if a game engine uses the nyan database to predict a future game state. The
event-driven design of openage uses this to store ahead-of-time calculations
of the game state [60]. A possible situation for predictions done in openage is
illustrated in figure 4.4. State C and E equal “reality”, H, F and G are predictions
of the future. An example prediction could be that in 10 seconds the research
to make villagers stronger will be finished. The patches for this will be active
from the point in time their transaction was predicted for. The patches’ effects

36

4.9 Application Interaction

are included in calculations for queries after that timestamp.

A B C H

D E F G

initial state team team prediction

player predicted player state

Figure 4.4: Game state change history and predictions over time

The interpretation of the point in time has to be done by the application,
the nyan database only provides a sequential integer number for transaction
ordering. Those could be used for game ticks, nanoseconds or any other suitable
measurement unit. The decision when a prediction is created or invalidated
and the interpretation which time stamp is the “current” state is up to the
application [60].

Patches may add new parents to an object, for example to achieve injecting
an object in an existing inheritance relation like presented in Section 4.5. It is not
possible to remove parents from an object: If this was allowed, members could
vanish. This would lead to many runtime errors, therefore this is not allowed.

Due to strict type checking for member values when objects and patches are
loaded, the only problems that can not be detected earlier is C3 linearization
errors. This means that either there is cyclic inheritance or that no linearization
can be found, caused by a patch in a transaction. A simple example for this was
presented in Listing 14.

Before a transaction is stored permanently in a view, the nyan database
checks for linearization problems. If the state would not be consistent after the
transaction was stored (that is, the C3 algorithm can’t find valid linearizations
for all objects affected by inheritance changes), the transaction fails and none of
the patches is applied.

4.9 Application Interaction

The nyan database is designed to be embedded into an application as a shared
library. The interface to this library is simple, making it easier to keep stable.
All of the nyan data structures are created at runtime, which means the API to
the application has to make this as convenient as possible.

The interface has to provide handles for views (from Section 4.7), transactions
(from Section 4.8) and nyan-objects (from Section 4.3.1).

The identification of nyan-objects must be done through strings of their fqon.
The same is true for object members, which have to be referred to by their name.

37

4 Design

The basic idea is that the application loads the data schema into the nyan
database so it can then perform requests on this structure and names.

This schema also defines the data types, so the application can use this to
perform type conversions to its native type system: At compile-time of the
application, the schema and the access of data in the application must be
aligned. Therefore type conversions are possible, as long as nyan guarantees
type safety.

Before a query result can be converted to the application’s native language
type, the query must be performed. Queries operate on a nyan-object handle
and evaluate one or more of its members.

The first step in the calculation is the linearization of the parents of that object
(see Section 2.4). Then, the resulting list is walked until an assignment operator
is found (=). The iteration is stopped because all changes after that would be
overwritten by that =. The assigned value is copied as the origin for the query
result. Then, the list of objects is walked backwards, starting with at the object
which had the assignment operator. For each object, the operation is performed
on the query result, until the list head is reached again.

This result can be cached and must be marked invalid if the value changes in
one of the objects of the inheritance graph through a patch. The result can then
either be calculated again once it is queried, or the result can be calculated as
soon as the patch is applied. The decision here is a trade-off between fast patch
applications or fast value queries.

A query is performed for a specific point in time. This is required because the
transaction history is recorded. Each of the visited object’s state is then chosen
based on the point in time for a query. By default, transactions and queries
operate at time t = 0 so the database behaves like it had no state history.

38

5 Implementation

The implementation is published under the GNU LGPLv3 license. The code
repository can be accessed through GitHub [22].

The language of choice for the implementation is C++ [57], as it is a fast
system programming language used in many applications and games. The
implementation was done using the C++14 language standard.

The rest of this chapter will provide insights into the structure and implemen-
tation details of nyan. The implementation closely follows the design described
in Section 4 and consists of the modules shown in Figure 4.1.

The nyan database code for embedding in an application is compiled in a
shared library, libnyan.so. The only header an application needs to include
is nyan/nyan.h.

In the following sections, key components of the implementation are pre-
sented. First, the implementation of the language parsing is explained in
Sections 5.1 and 5.2. Section 5.3 presents the creation of the initial database state.
How database states are stored is explained in Section 5.4. The creation of new
states in views through transactions is elaborated in Section 5.5, followed by
the implementation of data queries in Section 5.6.

5.1 Lexical Analysis

The lexical analysis is performed by a tokenizer, which splits up the contents
of a nyan file into tokens. A token is made of a group of characters and its
type. The list of tokens emitted is then organized in the abstract syntax tree (see
Section 5.2).

The token stream, consisting of all tokens of a nyan file from top to bottom,
is created by the flex lexer [25].

All defined tokens are listed in Table 5.1.
The lexer ignores comments, that is all parts of a line beginning with #. All

whitespace, except in strings and for line indentation, is ignored, too. The
tokens will be matched greedily. That means as many characters as possible are
put into one token.

The indentation level is determined after an end of line was reached. This
number of leading spaces is then measured, and differences to the previous line
are emitted as INDENT and DEDENT tokens for every group of 4 spaces. This is
done in the nyan::Lexer::handle indent method.

In this method, the correct indentation is enforced. Regular block indentation
is a multiple of 4 spaces, but it is more complicated for the correct bracket

39

5 Implementation

Token Definition Description
AS as
AT @
COLON :
COMMA ,
DEDENT Indentation level decrease
DOT .
ENDFILE End of file
ENDLINE \n End of line
ELLIPSIS ...
FLOAT -?[0-9]+\.[0-9]*
FROM from
ID [A-Za-z][A-Za-z0-9]* Letters and numbers
IMPORT import
INDENT Indentation level increase
INVALID Unknown content
INT (-|0[xX])?[0-9]+ base16 and base10 numbers
LANGLE <
LBRACE {
LBRACKET [
LPAREN (
OPERATOR [-+*/|%&]|[-+*/|%&]=|=
PASS pass
RANGLE >
RBRACE }
RBRACKET]
RPAREN)
STRING "(\.|[ˆ"])*"

Table 5.1: All possible tokens in the nyan parser

continuation levels. As designed in Listing 16, the correct level depends on
the wrapping style, which is analyzed in nyan::Lexer::track brackets
and the corresponding level is stored on a indentation level stack. For closing
brackets, the level is verified and removed from the stack.

5.2 Abstract Syntax Tree

The abstract syntax tree (AST) is built from the token stream, created by the
lexer in Section 5.1. The AST structure directly follows the grammar from
Listing 15.

The root AST object is of class nyan::AST (from ast.h), which then con-
tains all ASTObjects and ASTImports. The ASTObject stores its name, a
potential patch target, specification of possible inheritance changes, its parents,

40

5.3 Initial State

its members and other ASTObjects declared within its scope.
The decision how the AST is built up is done by “looking ahead” upcoming

tokens, which then decide the path in the grammar structure. This means the
parser for nyan, implemented within the AST buildup, is a left look-ahead
parser (LL(k)) [48]. For the nyan-grammar k = 2, because if an o identifier
is encountered for a member value, it may either be an object identifier or a set
definition, if it is followed by a {.

While the AST is built up, many sanity checks are performed, but mainly
the allowed order of tokens is verified. Some values are converted from their
textual representation in the nyan file to C++-native data types like enums and
ints. All remaining text is stored as std::string.

The resulting AST now matches the grammar and can be processed further
in multiple passes for the creation of the initial state.

5.3 Initial State

The application has to create an instance of nyan::Database, which is the
entry point for the nyan C++ API. In a nyan::Database, the initial state is
created. The initial state is the collection of all nyan-objects with all their values
and relations, without the application of any patch. To load content into the
database, the application has to call Database::load, which expects an initial
filename and a function that can provide files.

The function allows the application to provide the nyan database any file at
any location, which may or may not be a real file on the filesystem: It can be used
for transparently accessing compressed file archives or to provide file content
over network from a server. The abstraction can be done by implementing
specializations of the nyan::File class, which then perform the correct calls to
access file content. This way, applications can load files into the nyan database
no matter how they are stored. The nyan database calls this function whenever
a file is requested. The first request will be done for the filename that was
passed into the load call, subsequent ones for files included from there.

The creation of the initial database state is conducted in two phases.
The first phase is the AST creation and file imports. The initial file name is

put into the set of namespaces to import. This set will then be processed while
it has elements: First, a namespace name is taken from the set. Next, the file
that matches this namespace is opened and parsed (see Sections 5.1 and 5.2).
Imports in this file are put into the set of namespaces to be loaded. Then, the
next import is processed the same way. Files are not imported again if their
load succeeds. Cyclic imports are allowed.

The second phase consists of multiple passes on each file’s AST. In the first
step, the type database is filled with all known object names. These are con-
structed from the file namespace and the object name, thus, their fqon. No other
information is stored at first. In the second pass, the type database can be filled
with more information about each object. All available object names are already

41

5 Implementation

known by now, so all references to objects can be checked and expanded to their
fqon. Hence, the patch target, inheritance change and parent object names can
be extracted and stored: The patch target and inheritance changes are written
to the type database, the object parents are stored into the initial state of this
object. The former can’t be changed at runtime, while the latter can, so they
are stored at different locations. From the object-has-parent relation follows
object-has-child. This information is deduced and stored. Subsequently, type
information about object members is gathered and stored into the type database.
Object references (as member type) are expanded in this step as well. The object
name expansion algorithm is shown in Listing 23.

def find_namespace(current_ns, search_ns, type_db, aliases):
"""
current_ns and search_ns are lists of identifiers
current_ns: the namespace an object was referenced in
search_ns: queried object name (a possibly cut fqon)
type_db: knows all valid fqons
aliases: a dict from identifier to full namespace

returns the fqon for the search_ns, else it errors
"""
search_base = current_ns
while True:

result = search_base.extend(search_ns)
if result in type_db:

return result

when root is reached, do alias expansion
if len(search_base) == 0:

result = aliases.get(search) or []
result.extend(search)
if result not in type_db:

raise Exception("unknown name: " + search)
return result

search_base.pop()

Listing 23: Object name expansion algorithm to get an fqon

As a second step, all objects are now linearized (see Section 2.4). The results
are stored in the initial object state store.

The third step is linking type information through inheritance hierarchies.
The patch target is propagated for objects that inherit from a patch. The member
type information object from the initial member definition is linked into the
member of each child object that performs operations on it. The initial definition
does not need to be searched every time then. Sanity checks for type conflicts,
type re-definitions and inference problems are performed coincidentally. After
this, the basic skeleton for filling in member values is done.

The fourth step fills in those values. It can be done only now as type informa-
tion was not propagated before step three. For each object’s initial state, one

42

5.4 Storage

entry for each member is created and the value is assigned. Special handling is
needed for values that are objects: The type-check must utilize the linearization
of the allowed object type to allow children as well. After this, another check is
prepared to verify only non-abstract nyan-objects are used as values. Depend-
ing on the member type and the value type, the operator is then checked for
validity.

The fifth step performs further sanity checks now that all types and values
have been loaded. For each object, it is checked that only patches have inheri-
tance addition annotations (an object may inherit from a patch, then it has no
written patch target). For each member of each object, there must be an assign-
ment operator (=) before relative operations can be done. The last check is the
verification for only non-abstract objects used in values, which was prepared in
step four.

This procedure is executed for each mod and application that wants to load
data with the nyan::Database::load function. The order has to be deter-
mined by the application, otherwise the imports may point to unknown files, if
the application does not support loading files of a mod that is requested but
was not already loaded.

5.4 Storage

The database storage is divide into two parts. One part stores type, structure
and location information of nyan-objects, the other part stores inheritance
information and values of nyan-objects. The first part is only ever extended, and
only when loading new objects with the nyan::Database::load function,
handled by the nyan::MetaInfo class. The second part is a nyan::State
which represents the initial database state with its object inheritance and values.

The nyan::MetaInfo class stores information about each object: Its location
(for beautiful error messages), information whether it is a patch (i.e. its patch
target), its inheritance patching definition, and its initial linearization and
children names. Furthermore, information about each member of each object
is stored: Where it was defined (again, for error messages), if it was an initial
definition, and a reference to its type. The child and linearization information
are a template, those will be copied to a nyan::State in a nyan::View when
changes are performed.

A nyan::State is the storage of non-permanent information about nyan-
objects, it maps fqons to nyan::ObjectStates, which stores the parents and
members. A nyan::State can store a reference to a nyan::State it is based
on, this mechanism is then used for the change history described in Section 5.5.

The lookups from fqon to ObjectState and from member id to Member,
are implemented with a std::unordered map. This is the built-in key-value
hash-map store in C++. Should their performance not be sufficient, more
advanced storage techniques (like dedicated key-value databases, for example
the Berkeley Database [35]) could be used in the future. Further adjustments

43

5 Implementation

have to be done then, mainly because the implementation relies on the copy
and move semantics of std::unordered map when new ObjectStates
are constructed, which may be hard to reflect.

5.5 Views and Transactions

A nyan::View is created by invoking nyan::Database::new view. The
view stores a link to its database and its change history, which is then filled with
entries through nyan::Transactions. A dependent child view is created
with nyan::View::new child, the new child view is then registered at its
parent so transactions can then be propagated.

In a view, an object can be queried by its fqon using the nyan::View::get
method. The result is a nyan::Object, which is a handle designed to be used
as permanent reference to a nyan-object in the application. It represents the
status of this object within a view, and it is used for value queries (see Section
5.6).

A view stores the history of nyan::States, which are indexed by a times-
tamp. Each state stores changed nyan-objects with their new members and
values. The state history can be queried for a certain point in time. The result is
the last collection of object states at either exactly that timestamp or the latest
state before the timestamp. The lookup is performed with a std::map, which
requires logarithmic time due to its tree structure.

To add a new state to this history, a transaction has to be performed with
a nyan::Transaction, created by nyan::View::new transaction. A
point in time can be passed to this function. If none is given, the transaction
will be performed for t = 0. When created, the transaction creates a new
nyan::State for each view in the view hierarchy. Updated objects will be
stored in this new state. This new state is based on an existing state, which is
stored directly before the point in time the transaction is for.

Patches (fetched as nyan::Object from some nyan::View) have to be
added to the transaction with its nyan::Transaction::add. For each patch
added, the patch target object will be copied from its latest-matching state
to each new state. This is the first step for the “shadow paging”-transaction
approach (see Section 2.3. The parent linearization of the patch is used to gather
all prerequisite patches. Those patches are then applied to the copied target
object. This is repeated for every patch that is added until the new state is
constructed.

When the transaction is committed, the only thing left to do is to register the
newly-built states at their requested time in the history timeline of each view
the transaction was for.

The first step is to take existing states at the same point in time as the trans-
action and merge them with the new states. This must be done as the existing
state will be overwritten and thereby all its stored objects will be lost. The
merge operation takes the existing state and updates it with all objects from the

44

5.6 Queries

new state.
The second step is to update cached linearizations and tracked object children.

In this process, the new inheritance graph for all children of objects that have
changed their parents (due to patches that added new parents) is linearized with
the C3-algorithm. If an error occurs during C3-linearization (no linearization
found or cyclic inheritance), the transaction is marked as failed. None of the
new states were registered, so the transaction has no effect. If no error occurs,
all needed updates for value changes, linearizations and child tracking were
gathered, including all necessary sanity checks.

The third and last step for a transaction commit is the permanent storage of
the state containing the newly created object states and update caches in each
view. The insertion of the new state (which contains all newly patched objects)
at the desired timestamp also leads to the deletion of states after it.

5.6 Queries

Queries for values are always performed on a nyan::Object, obtained from a
view through nyan::View::get. The object is a handle that is time-independent.
It can be stored in the application logic and it will never become invalid, because
nyan-objects can never be deleted in the database.

A query has to be done for a point in time of the value history. If no point in
time is specified, t = 0 is used.

Queries are performed with the templated nyan::Object::get function,
which internally roughly uses the same algorithm as it is simplified in Listing 24.
In principle, the linearization of the object is evaluated and the last assigned
value of the member in question is copied and then updated for each operation
of a child object. This uses the same implementation for value updates as the
patching does.

The result can then be casted to the type specified by the template and by
that a C++-native result is created. This cast can assume the type that was used
for the member declaration.

Collections such as the set and orderedset are provided to C++ through
virtual iterators, which relay the value iteration to nyan::ValueHolders.
They exist so hashing and comparison have a common interface, and the imple-
mentation can be value-specific. For the iteration to work in a generic way for
all possible collection types, a lot of template meta programming and virtual
inheritance is needed for the iterators. The entry point for the iteration is in
nyan::Container::begin, which is then implemented for each container
type. For the sets, this was unified to a common nyan::SetBase, which can
create iterators for both the ordered and unordered set, through templates.

Apart from member values, a nyan::Object supports providing other
information. It can generate a list of its parents at a point in time, check if it has
a member at a given time, return if it extends a given fqon for a timestamp and
return non-changing information: Its file location or its patch target.

45

5 Implementation

def get_value(object, member, time):
"""
object: fqon for the source object
member: queried member identification
time: point in time the member is queried for
"""
query_parents, result = [], None
start_idx = 0
linearization = get_linearization(object, time)

for idx, parent_name in enumerate(linearization):
parent_obj = get_object(parent_name, time)
query_parents.append(parent_obj)
if parent_obj.has_member(member) and\

parent_obj.get_member_operation(member) == ASSIGN:
result = parent_obj.get_member_value(member).copy()
start_idx = idx
break

for idx in range(start_idx, -1, -1):
change = query_parents[idx].get_member(member)
result.apply(change)

return result

Listing 24: Query result calculation

The nyan::Object-interface is very minimal and it is suitable for storage
in the application directly at the point where this object’s data is useful for
application operation.

5.7 General Remarks

Much effort was spent to produce helpful error messages. For those, the lo-
cations of all nyan-objects and their members have to be tracked. In case of
problems, the problem origin can be traced and displayed in a message.

Although many operations are written for run-time handling of nyan data,
heavy use of templates, move semantics and constexprs allows many com-
piler optimizations and avoids data copies at runtime.

All sanity checks are implemented at load-time for nyan-objects, the only
check during transactions is linearization verification.

The code is documented with comments compatible for automatic documen-
tation generation with Doxygen [20].

46

6 Evaluation and Discussion

In this chapter, available functionality in the implementation is evaluated by
the case study of openage [36].

The implementation presented in Chapter 5 directly follows the design from
Chapter 4. In this chapter it is evaluated regarding its practical usability for
application runtime configuration.

Testing and development of the nyan framework was done on a Thinkpad
X220t with Gentoo GNU/Linux 4.13.4-JJ x86 64 and gcc 7.2.0. The
code is published under the GNU LGPLv3 or later versions [22].

The first part provides examples that illustrate the functionality of the pro-
posed design and implementation. Several configuration scenarios and a pos-
sible way to express them with nyan are presented and their relation to the
design decisions are explained.

Next, the design and implementation choices are evaluated critically. This is
followed by current shortcomings. Some of those problems can be the founda-
tion for further improvements, which are suggested in Section 7.1.

6.1 Functionality

The nyan framework allows an application to implement a hybrid approach
for the creation of a mod API. It can register scripting functions as well as data
records. As nyan only allows configuration, the application developers need to
decide on an exposed interface and what to do with it. The examples illustrate
how nyan assists in the creation of configuration interfaces required by several
different scenarios in the openage use-case. The first example in Section 6.1.1
shows how queries with the nyan-API are done. All other examples assume
the knowledge of this concept.

6.1.1 Application Integration

The first demonstration is the creation of a simple mod API. The application
provides a data schema and performs access to nyan based on this.

The following example illustrates how a mod API can be implemented. The
application provides a Mod nyan-object which has a member that stores an
ordered set of patches to apply. When a mod pack is created to add new content
to the engine or change existing records, it creates a child object from this Mod-
object and add patches to the set. The Mod-object is registered to the application
with a mod description file afterwards.

47

6 Evaluation and Discussion

After the application loads its schema in the form of nyan-objects, application
code can then access customizations of those nyan-objects and their members
through the nyan C++ API.

In Listings 25 and 26, an example implementation of this mechanism is
presented.

Engine API definition: engine.nyan

Mod():
patches : orderedset(Patch)

Tech():
patches : orderedset(Patch)

Unit():
hp : int
can_create : set(Unit) = {}
can_research : set(Tech) = {}

CFG():
initial_buildings : set(Unit)
name : text

StartConfigs():
available start game configurations
available : set(CFG) = {}

Listing 25: A simple mod-API example (engine.nyan)

The engine provides nyan-objects (the schema) which must be filled with
values when used in the mod. A Unit may be implemented as a controllable
object in the game world (a character or a building), a Tech is a technology
available for research to improve a unit.

The Unit.hpmember is enforced to be set to a value, otherwise the improved
Unit object cannot be used in assignments. With this interface definition from
the game engine, game content is created (in Listing 26). A Villager is a Unit
that can build a TownCenter. In a TownCenter, new villagers can be created
and the Loom technology can be researched, which improves the Villager’s
health points. The initial registration of this is the DefaultConfig, which
configures the start situation for a player: It shall start with one TownCenter.
VillagerMod is the mod entry point, which changes the default game start

configuration to be the one with a default town center. If this town center
was not available by default, the game engine would never know about either
Villagers or TownCenters, although the objects would be present in the
nyan database.

48

6.1 Functionality

Data pack: content.nyan

import engine

Villager(engine.Unit):
hp = 25
can_create = {TownCenter}

Loom(Tech):
HPBoost<Villager>():

hp += 15

patches = {HPBoost}

TownCenter(engine.Unit):
hp = 2400
can_create = {Villager}
can_research = {Loom}

DefaultConfig(engine.CFG):
initial_buildings = {TownCenter}
name = "you'll start with a town center"

VillagerMod(engine.Mod):
Activate<engine.StartConfigs>():

available += {DefaultConfig}

patches = {Activate}

Listing 26: Content creation with the given engine API (content.nyan)

In order to tell the engine about this VillagerMod, independent registration
has to be done, for example in a plain text file presented in Listing 27.

modpack.nfo
load: content.nyan
mod: content.VillagerMod
description: Adds villagers and town centers to the game
could be extended with dependency and version information

Listing 27: Auxiliary configuration file to register mods (modpack.nfo)

This file is parsed by the game engine so it can know which filename to use
and which object in this file describes the mod.

49

6 Evaluation and Discussion

In summary, the load procedure works like this:

1. Load engine.nyan into the nyan database

2. Read modpack.nfo

3. Load content.nyan into the nyan database

4. Apply the ”mod-activating” patches in content.DefaultMod

5. Let the user select one of engine.StartConfigs.available

6. Generate a world map and place all units in CFG.initial buildings

7. Display GUI elements for units that can create others and bring them into
being

8. Display GUI elements to activate available research (Loom, in this case)

If this mod is enabled by the user, this means when a newly created villager
is selected, it can build town centers! And the towncenter can research a
healthpoint-upgrade for villagers. This behavior does not stem from nyan, it
has to be implemented in the game engine.

The mod API definitions in engine.nyan have to be designed exactly the
way the C++ engine code is then using it. It sets up the data schema so that
the nyan C++-API can then be used to provide the correct information to the
application.

The following C++-code demonstrates the usage of the nyan C++ API to load
and access the nyan objects in the nyan database.

// callback function for reading nyan files via the engine
// we need this so nyan can access into e.g. archives of the engine.
std::string base_path = "/some/game/root";
auto file_fetcher = [base_path] (const std::string &filename) {

return std::make_shared<File>(base_path + '/' + filename);
};

// initialization of API
auto db = std::make_shared<nyan::Database>();
db->load("engine.nyan", file_fetcher);

// gather all enabled mods and their order (simplified..)
std::vector<Mod> enabled_mods{{"modpack.nfo"}};

// load all enabled mods in order
for (auto &mod : enabled_mods) {

ModInfo nfo = read_mod_file(mod.nfo_name);
db->load(nfo.load, file_fetcher);

}

// modification view: this is the changed database state
std::shared_ptr<nyan::View> root = db->new_view();

50

6.1 Functionality

// verify that the plugin-activation object is type-correct
nyan::Object mod_obj = root->get(nfo.mod);
if (not mod_obj.extends("engine.Mod", 0)) { error(); }

nyan::OrderedSet mod_patches
= mod_obj.get<nyan::OrderedSet>("patches", 0);

// activation of userdata (at t=0)
nyan::Transaction mod_activation = root->new_transaction(0);

for (auto &patch : mod_patches.items<nyan::Patch>()) {
mod_activation.add(patch);

}

if (not mod_activation.commit()) { error("failed transaction"); }

// presentation of userdata (t=0)
for (auto &obj : (root->get("engine.StartConfigs")

.get<nyan::Set>("available", 0)

.items<nyan::Object>())) {
present_in_selection(obj);

}

// query the game profile with the GUI
nyan::Object startconfig = get_selected_startconfig(...);

// use result of GUI-selection
printf("generating game map with config %s",

startconfig.get<nyan::Text>("name", 0));
place_buildings(startconfig.get<nyan::Set>("initial_buildings", 0));

// set up teams and players
auto player0 = std::make_shared<nyan::View>(root);
auto player1 = std::make_shared<nyan::View>(root);

// ====== let's assume the game runs now

// to check if a unit is dead:
engine::Unit engine_unit = ...;
nyan::Object unit_type = engine_unit.get_type();
int max_hp = unit_type.get<nyan::Int>("hp", current_game_time);
float damage = engine_unit.current_damage();
if (damage > max_hp) {

engine_unit.die();
}
else {

engine_unit.update_hp_bar(max_hp - damage);
}

// to display what units a selected entity can build:
nyan::Object selected = get_selected_object_type();

51

6 Evaluation and Discussion

if (selected.extends("engine.Unit", current_game_time)) {
for (auto &unit : (selected.get<nyan::Set>("can_create",

current_game_time)
.items<nyan::Object>())) {

display_creatable(unit);
}

}

// technology research:
nyan::Object tech = get_tech_to_research();
std::shared_ptr<nyan::View> &target = target_player();
nyan::Transaction research = target.new_transaction(research_finish_time);
for (auto &patch : tech.get<nyan::Orderedset>(

"patches",
current_game_time

).items<nyan::Patch>()) {
research.add(patch);

}

if (not research.commit()) {
error("failed research transaction");

}

Listing 28: Auxiliary configuration file to register mods (modpack.nfo)

The application has to initiate transactions for the mod activation. The appli-
cation is not aware what modifications are done then by mods, this happens
solely through nyan. When the nyan-objects are queried, the nyan database
returns the customized content.

6.1.2 Unit Hierarchy

In openage, several unit types belong to one unit class. Examples for such
classes are all horse-mounted units, all arrow-shooting units, all ships, units
with swords, etc. Improvements are available to a single unit type (for example
for a civilization’s unique unit) or a whole class of units.
nyan assists in the representation of the hierarchical structure for this unit

structure. It can represent the hierarchy with relative changes. Changes in this
hierarchy are propagated transitively through value inheritance.

The engine must provide an interface for Unit and RangedUnit because it
has to implement unit movement, damage calculations and projectile ballistics.
The game content specification then uses this for the declaration of unit types
and their relations. An example for this is in Listing 29, where the Archer,
Crossbowman and Arbalest are defined.

A single unit on screen has a unit type, which may point to Crossbowman
for example. When this unit type is queried, the resulting value is aggregated
over the C3-linearization of the inheritance hierarchy (hp = 30 + 5).

52

6.1 Functionality

Engine API definitions:
Unit():

hp : int
RangedUnit(Unit):

range : float
damage : float
rate : float

Content declaration:
Archer(RangedUnit):

hp = 30
range = 4.0
damage = 4.0
rate = 2.03

Crossbowman(Archer):
hp += 5
range += 1.0
damage += 1.0

Arbalest(Crossbowman):
hp += 5
damage += 1.0

Listing 29: Possible unit type hierarchy definition

When mod wishes to introduce a new technology to research which improves
the health points of all archers, this can be achieved with a patch just for Archer,
because Crossbowman will still have 5 more health points than the Archer.
The patch for such an improvement is in Listing 30. The mod introduces a
new button in the town center which, when clicked, improves all archers,
crossbowmen and arbalests by 10 health points.

TougherArchers(Tech):
ImproveArcher<Archer>():

hp += 10
patches = {ImproveArcher}

VillagerMod(Mod):
AddResearch<TownCenter>():

can_research |= {TougherArchers}
patches = {AddResearch}

Listing 30: Adding a new technology by a mod

This is possible because the inheritance hierarchy in nyan remains effective,
independently of the patch application.

53

6 Evaluation and Discussion

6.1.3 Mod Combination

In the previous two examples the Loom and TougherArchers technologies
were defined. To balance the game, it might be better if loom would give vil-
lagers more health points, but the archer improvement has to be weakened. To
achieve this, one can adjust already existent mods by introducing another mod.
The mod declared in Listing 31 performs those changes so the Loom technology
will then improve villagers by 20 health points, and the TougherArchers will
only boost archers by 5 points.

GameBalance(Mod):
BalanceLoom<Loom.HPBoost>():

hp += 5
BalanceArchers<TougherArchers.ImproveArcher>:

hp -= 5
patches = {BalanceLoom, BalanceArchers}

Listing 31: Modding a mod to balance the game

The mechanism used here is that a patch (BalanceLoom) modifies another
patch (HPBoost). The GameBalance mod can be changed by another mod, if
required.

6.1.4 Creating a Scripting API

nyan does provide any possibility to express and execute code, but regular
member values can be used to define an entry-point for a fully dynamic scripting
API. The names of hook functions to be called are set up through nyan. It
is impossible to automatically check the validity of code. This can lead to
unexpected runtime crashes. Handling for those errors must to be done in the
application.

In order for code hooks to be active, the application must load the script file
and call the desired function. A simple example is presented in Listing 32. The
semantics and signature of the hook functions are prescribed by the application.

These code hooks can then even be modified by other mods: The filename
and function name can be redirected to a different script, when desired.

In order to reduce redundancy instead of repeating the source file name, a
specialized Code object that sets Code.source to a fixed value can be created.
This object is then further specialized for changing the function name.

54

6.1 Functionality

Engine API:
Code():

source : file
func : text

Ability():
check_available : Code
on_activate : Code

Usage for content creation:
FlyAbility(Ability):

AvailFunc(Code):
source = "./fly_mod/entry.py"
func = "check_available"

check_available = AvailFunc
ActivateFunc(Code):

source = "./fly_mod/action.py"
func = "fly_handler"

on_activate = ActivateFunc

Listing 32: Simple scripting API hook registration

6.1.5 Schema Extension

This example demonstrates the combination of a more complete content API
for a game engine like openage.

First, the example assumes the engine now supports in-game resources. Also,
several abilities for units like their movement are now available.

The content pack adds wood as a resource and creates villagers and town
centers. Villagers can chop wood and bring it to the town center.

Listing 33 defines the application API. Listing 34 uses this API to define
example game content. In Listing 35, a mod is declared, which extends the
schema by adding a new resource. The Python script from Listing 36 further
customizes the newly added FoodGather ability.

55

6 Evaluation and Discussion

engine.nyan: Engine feature API with resources
Mod():

name : text
patches : orderedset(Patch)

Code():
source : file
func : text

Ability():
Default(Code):

source = ""
func = ""

check_available : Code = Default
on_activate : Code = Default

Resource():
name : text
icon : file

Unit():
abilities : set(Ability)
hp : int
can_create : set(Unit) = {}

DropSite():
accepted_resources : set(Resource)

ResourceSpot():
Amount():

type : Resource
amount : int

resources : set(Amount)

Movement(Ability):
speed : float

LifeAbility(Ability):
die_animation : file
death_unit : Unit

DecayAbility(Ability):
time : float

CollectResource(Ability):
target : Resource

Listing 33: Example engine API with resources (engine.nyan)

56

6.1 Functionality

content.nyan: default content pack
import engine
Wood(engine.Resource):

name = "Wood"
icon = "wood.svg"

TownCenter(engine.Unit, engine.DropSite):
hp = 2400
accepted_resources = {Wood}
can_create = {Villager}

Villager(engine.Unit):
hp = 25
Move(engine.Movement):

speed = 15.0
Life(engine.LifeAbility):

die_animation = "./assets/aargh.ani"
death_unit = DeadVillager

ChopWood(engine.CollectResource):
target = Wood

abilities = {Move, ChopWood, Life}

DeadVillager(Villager):
Decay(engine.DecayAbility):

time = 40.0
abilities = {Decay}

Listing 34: Example content mod pack with Wood resource (content.nyan)

food_mod.nyan: adds new resource
Food(engine.Resource):

name = "Food"
icon = "assets/food_icon.png"

BerryBush(engine.ResourceSpot):
BerryFood(engine.ResourceAmount):

type = Food
amount = 125

resources = {BerryFood}

FoodGather(engine.CollectResource):
target = Food
Check(engine.Code):

source = "behavior.py"
func = "check_food_target"

check_available = Check

VillagerMeat(engine.ResourceSpot.Amount):
type = Food
amount = 60

57

6 Evaluation and Discussion

FoodMod(engine.Mod):
TCAdd<content.TownCenter>():

allowed_resources += {Food}
Gathering<content.Villager>():

abilities += {FoodGather}
Cannibalism<content.DeadVillager>[+engine.ResourceSpot]():

resources = {VillagerMeat}

name = "Add the food resource to villagers"
patches = o{TCAdd, Gathering, Cannibalism}

Listing 35: Example mod that adds Food (food mod.nyan)

behavior.py: plugin script for the food_mod
def check_food_target(unit, target):

only gather from foreign villagers
when there is food deprivation
if target.type == "content.DeadVillager":

if unit.owner.resources["Food"] < 200:
if unit.owner != target.owner:

return True
elif target.type = "food_mod.BerryBush":

return True
return False

Listing 36: Script in the food mod mod pack (behavior.py)

After the FoodMod from Listing 35 is enabled, villagers gain the ability to
gather food from villagers that are not from the player. The script function
arguments are selected by the game engine, nyan just provides the function
name.

The engine API exposes its configuration through the objects of engine.nyan.
Behavior for them is implemented in native code. The MovementAbility for
example grants units pathfinding and walking capabilities, which is imple-
mented in the engine. The interesting part is FoodMod.Cannibalism: It turns
dead villagers into resource spots, which provide food. The food gathering
ability is further refined using a Python script. The engine scripting API is ex-
posed through Ability.check available and is used in behavior.py.
The registered function makes use of the schema extension: It uses the newly
added Food resource for the availability check. Other resources can be added
in a similar way.

58

6.2 Error Checking

6.2 Error Checking

All nyan files are error-checked at load time. If an error occurs, the load function
fails and an exception is thrown.

An error occurs for example if a type check fails, the inheritance graph cannot
be linearized or if unknown names are accessed.

Some notable errors and their messages are presented in Listing 37.

NewType():
test : int

Base():
setting : NewType

Override(Base):
setting = NewType

test/test.nyan:6:14: error: this object has members without values: test
setting = NewType

ˆ˜˜˜˜˜˜

ProtoType():
value : float

RealType(ProtoType):
value = "text"

test/test.nyan:4:12: error: invalid value for number, expected float
value = "text"

ˆ˜˜˜˜˜

Right():
...

Wrong():
...

Demo():
value : Right = Wrong

test/test.nyan:6:20: error: value (resolved as test.Wrong)
does not match type test.Right

value : Right = Wrong
ˆ˜˜˜˜

Listing 37: Various type checking errors

When nyan-files were loaded successfully, the correct structure access and
conversions to a C++ type is in the responsibility of the application.

In the nyan database implementation, several value types are used that must
be casted dynamically in order to be used natively. If the structure is used
wrongly (e.g. access to missing objects or members), errors will be raised. If
values are queried, but casted wrongly, this may result in undefined behavior
(depending on the cast type). These are problems and errors the application
must deal with, the nyan-API does not have bearing on this.

59

6 Evaluation and Discussion

6.3 Security

The nyan language is purely used for data representation and does not allow
any code execution. This is ensured by validation when data is loaded (see
Listing 37). No native C++-objects other than the representation and storage
components for the database are created, therefore no unsanitized data records
are provided at the nyan-API.

The records are only provided to the application when it queries for them,
so it may be possible to trigger bug in the application that embeds the nyan
database by clever object creation, combination and registration. A possible
bugs is the creation and registration of a nyan-object which in turn is used to
create a C++-object in the application. If this object is casted statically without a
runtime type check to a wrong type, the object causes undefined behavior. If
the created object is casted dynamically, this error would be detected.

More errors and bugs can occur if configuration for code hooks is provided
in the application, for example through the API in Section 6.1.4.

If code registered to a hook is untrusted, a proper sandbox is required to
prevent the function from performing malicious tasks. This is particularly
important for a public mod registry, where users can upload code that would
then be executed by the application. A possible solution, except a sandbox, is
code signing by the application authors. Unsigned third-party code could still
be allowed for mods. For unsigned mods, a warning can be displayed which
informs about code execution that may have unforeseen consequences. This
has to be taken care of by the application developers.

6.4 Design Considerations

The key features of the nyan framework make it suitable for integration into an
application that requires complex configuration scenarios.

The nyan language supports the declarative description of hierarchical and
connected data structures through inheritance and cross references. This form
of value propagation is directly built into the design and allows modification of
many objects through a common parent.

Another form of value modification is the usage of patches, which perform
permanent changes to its target. This means the old state of the target nyan-
object state will vanish. The modification capabilities of using inheritance and
patches is equal, therefore inheritance should be used whenever variants of an
object shall coexist. Patches should be used when this coexistence is not needed.

The constraint that nyan-objects can only be used as values if all their mem-
bers were assigned a value can be used to create an abstract data configuration
interface which enforces value settings.

If this schema is used wrongly, for example because members were forgotten
or used with the wrong type, the nyan database will issue errors that assist in
debugging the problem. If nyan-objects not part of the schema are loaded into

60

6.5 Feature Comparison

the database and are never used as value, they have no effect. Objects loaded
for the schema only become important because the application assumes their
existence for queries. From this follows that content additions only matter if
the application performs queries to members that link to these additions.

The nyan framework allows to create scripting APIs. They can be created
if the application interprets member values as filenames and function names.
The function signature and passed arguments are prescribed by the application.
The application is responsible for proper sandboxing or verification of this code
execution.

All changes in the nyan database are contained in distinct views, so the same
base state can develop differently, depending on the view. This is useful in game
engines to separate for example players and teams. The game start is the same
for all, then each team may have improvements depending on the civilization
the players selected. The view on the database for each player then may evolve
differently during the game, depending on the technologies he researches. This
state view separation is directly supported by the nyan database, making it fit
for tracking of independent states.

The history of all transactions within a view is tracked on a timeline, this
allows the application to store state predictions, which may turn out wrong. If
predictions shall be deleted, the nyan database can rollback to any previous
point in time of the transaction history.

Queries are performed on a member of a nyan-object in the database by
aggregating the values with custom operations in the C3-linearized parent list
of the target object. This flattens the data graph and takes all object injections
and value changes into account.

The nyan database is embedded into the application through its C++-API. In
theory, a pure C for this interface can be created easily to achieve compatibility
with most of today’s programming languages.

All these features make nyan a potent runtime configuration framework that
is suitable for complex applications scenarios like realtime strategy games such
as openage.

6.5 Feature Comparison

nyan unifies several strengths of existing approaches. A comparison which lists
the notable design properties of nyan is illustrated in Table 6.1. Other common
configuration systems, presented in Section 3, do not provide the features of
nyan at once.
nyanwas created to provide a unified solution that combines several strength

of other approaches. Non-developers and unexperienced mod creators can
declare modifications in the nyan language. Application developers can easily
integrate the nyan database with its C++ API to make use of the features the
nyan framework provides.

The nyan language tries to remain at the simplicity level of JSON, but extends

61

6 Evaluation and Discussion

Feature J
S
O
N

Y
A
M
L

Q
M
L

X
M
L

F
o
r
g
e

G
R
F

C
r
e
a
t
i
o
n

n
y
a
n

Key-Value �3 �3 �3 �3 � �3 �3 �3

Object references �3 �3 �3 �3 �3 � �3 �3

Type-safe � �3 �3 �3 �3 �3 �3 �3

Custom types � �3 �3 �3 �3 � �3 �3

Data inheritance � �3 �3 � � � � �3

Calculations � � �3 � �3 � � �3

Enforced schema � � � �3 �3 �3 �3 �3

Schema extension � � � � �3 � � �3

Data overlays � � � � � �3 �3 �3

Patches � � � � � � � �3

Data history � � � � � � � �3

Table 6.1: Available features for several data description systems

it with types. JSON could be used as input language for nyan with some
effort, but it lacks the language features that value types, object inheritance,
modification operators and patches can be expressed directly. It is of course
possible, when provided transformation operations and additional information,
to convert JSON to the nyan language.
YAML could also be converted into the nyan language if enough informa-

tion like member modification operators are supplied. Duplicate dictionary
keys, as allowed in YAML, must be forbidden then. The optional element type
information can be mapped directly. The YAML “merge-keys” feature is a sim-
plified form of the data inheritance mechanism of nyan, but it just supports the
override of value. Relative modifications are not possible.

Parent-relative calculations like in QML are possible in nyan with member
operators. A full code API like Forge, due to its nature, can be extended to pro-
vide arbitrary complex new interface functions. The downside is that untrusted
code can be executed without a proper sandbox. The scope of application
specific modding systems like GRF or the Creation Kit are very limited as they
are a great choice for their domain, but they are unsuitable for other possible
applications.
nyan provides data schema verification by enforcing type soundness and

known type and member names. The schema can be extended by adding new
nyan-objects. New records can then be based on the new nyan-objects so that
code plugins can access them. nyan-patches provide a new way of expressing
planned changes in a database. They allow the representation of the possible
state space without the storage of all resulting changes. None of the current
configuration systems provide a configuration change history.

62

6.6 Limitations

6.6 Limitations

6.6.1 Database Properties

The current design and implementation does not follow all properties for ACID-
compliance.

Transactions are performed atomically and are sanity checked to prevent
state corruption so database consistency is ensured. This means the first two
properties are satisfied.

Isolation for multiple clients is currently not implemented but is possible.
The implementation is focused for support for only one client application that
cannot access the nyan database from multiple threads in parallel. When a
transaction is committed, transactions with a timestamp after it will be deleted.
For parallel access, this means that the latest transaction commit will win to
drop states created by transactions with a later timestamp. With considerable
effort, it is possible to add client isolation to the nyan-API.

Database durability is missing by design. The initial state is created by the
application by loading all required nyan-files. Changes in views are also created
by the application through transactions. If the application terminates because
of any reason, the state is gone. It can be recreated if the application stores the
order and timestamps of successful transactions permanently on disk, those can
then be restored by recreation of the initial state and replaying the transactions.

Currently, there is no serialization support for permanent storage. This is
offloaded to the application, but can be added to the implementation if needed.

6.6.2 Expressions

It is not possible to formulate expressions as member values. Multiple objects
can be chained by inheritance to achieve calculation formulas.

If the design allows expression assignment to members, object chains are
no longer needed, but updates to the member value will replace the whole
expression, which limits the possibilities to combine multiple mods. This can be
improved by extending the language for expression patches, which transform
a given expression into a different one by declared rules. If those rules can be
modified with rules of the same syntax, expression modification-modifications
would be possible in patches.

Cross-member references could be achieved with expressions. With this mech-
anism, the value of one member can be composed by values of other members,
like it is possible with QML and of course real programming languages.

6.6.3 Update Notifications

Results can be retrieved only by initiative of the application when it performs
queries in a view. Patches are also applied through transactions on the appli-

63

6 Evaluation and Discussion

cation’s request. The patch activation can cause many other values to change,
because the changes are propagated in the inheritance graph.

There is no way for the application to know which values did change because
of the transaction. The application has perform requests to retrieve the updated
record values.

All changes could be delivered to the application as notifications through
callbacks. Then, when a transaction is committed, a function of the application
is invoked for each value that changes due to propagating state updates. With
this information, the application can update its internal state accordingly.

It is much easier for nyan to determine which values change than letting the
application keep track of this and then perform queries to retrieve the results.
This would be particularly interesting for event-based applications, which can
avoid active queries if the nyan-API can deliver changes directly.

In practice, this will not be a problem if the application queries for nyan-
objects it prescribed through the schema. Only nyan-objects reachable through
the schema should be relevant for application operation.

64

7 Conclusion

7.1 Future Work

nyan can be extended with many new features and ideas that provide improve-
ments to its current limitations.

7.1.1 Compiling nyan

Performance improvements in the interface from nyan to the applications can
be achieved by converting a given nyan schema, i.e. a set of object definitions,
into native code. This allows the application to access data directly in its natively
supported type and no string lookups are necessary to find entries.

The conversion process is similar to that of Cython, which is able to convert
Python code to C++ code. Compatibility to Python is ensured for generated
interface functions, sufficient type annotations can be added in order for Cython
to completely drop all of Python’s dynamic typing so that C++-only code is
emitted [3].

The same approach can be done for compiling the nyan language. A .nyan
file could be compiled into a pair of .h and .cpp files, which defines a special-
ization of nyan::Object which stores all the nyan-object-members as native
struct members of native type. This class still has to support accesses over the
runtime member map for two reasons. First, when runtime data is loaded (the
configuration .nyan files from a mod), all its string-indexed requests must be
redirected to the native members of the class. Second, if this “precompiled”
nyan-object is used as inheritance parent, new members added at runtime still
have to be stored.

If a child nyan-object uses multiple parent objects where two or more of those
were precompiled, only one of them can be used in its native form. Otherwise,
a combined native class variant is required, which can not be generated if the
need for a combined base object is not known beforehand.

One possibility for choosing one of the native parents to be the selected C++-
type is some annotation in the inheritance parent list. The annotation is then
used as a preference indication for the C++-class to instantiate.

7.1.2 Value Formulas

Currently, only one operation for each member is allowed. This could be
extended to include arbitrary expressions. The formulas can be restricted at

65

7 Conclusion

first, to only permit the reference to the current member once:

<member> = <value>|(<member>(<operation> <value>)+)

This would have the same effect as chaining multiple objects by inheritance
to achieve this formula.

The more advanced variant would even allow combining arbitrary object
member values into the formula. For the internal implementation, this would
mean many extensions in order to track value changes properly. Objects that
not necessarily a parent can then change its value, which would require an
update in the calculated value then.

7.1.3 Event Callbacks

Currently, the API is designed for queries from the application, whenever it
needs an answer it calls to nyan.

A way to extend this is to deliver notifications to the application, when a
value changed. The trigger to initially apply a patch is done by the application
already, but nyan can allow to register hooks for objects and members the
application is interested in.

7.1.4 List and Dict Type

The nyan language could be extended with a dict-type. When a member is
created as dict, the type has to be specified for the key and the value. Possibly,
this would be dict(keytype, valuetype).

The possible operators for this member are in Table 7.1.

Operator Description
= {key: value, k: v, ...} Assignment
+= {k: v, ...}, |= {..} Data insertion/replacement
-= {k, k, ...}, -= {k: v, ...} Deletion of keys
&= {k, k, ...}, &= {k: v, ...} Keep only keys

Table 7.1: Possible operators for dict

A list type was not included in the current design as there was no appar-
ent solution for the combination of lists. If two independent mods both add
elements to a list, each other can not know if an element is already in the list. In
a set this is no problem, it can be in there only once, but in a list it can be
added multiple times.

66

7.1 Future Work

7.1.5 Nesting Containers

Currently, only non-container data types (e.g. Object, bool, text) are possi-
ble for the type a container can contain. This can be extended to arbitrary types.
That way, a container can hold other containers, and so on.

The application has to handle those nested structures properly, it makes no
difference for the patching and value propagation mechanism inside nyan.

The only problem is that a set can not be hashed properly if an element
inside of it changes its hash. If a set contains a set, the inner set may either not
change its hash, or trigger a rehash of the outer set. A possible solution for
this is to freeze the set contents, so it becomes a frozenset, which can not be
changed any more.

The real-world need for such a feature is unclear because nyan-objects can
contain set members and members with references to objects. If set nesting is
required, an object can be created for each nesting depth, and an object reference
is stored in the set. This also allows named access to each set, which would
not be possible in a nested set.

7.1.6 Documentation Generation

It is possible to automatically generate API documentation for nyan-objects that
make up a schema. The structure and types can directly be derived from the
object declarations. Additional information and documentation can be added
as comments, but it is not yet possible to assign this information to specific
objects or members.

It would be necessary to extend the parser to not ignore any comment but in-
stead support some kind of mark-up language to allow interface documentation,
which can then be exported as HTML or LATEX.

This can also be integrated into Doxygen, which generates a complete cross-
reference web page for common programming languages [20].

7.1.7 Set Specialization Operators

A current design limitation is the possible specialization of containers through
inheritance. This problem occurs because the current operators on collections
(such as sets) do allow adding and removing elements, but not both at the same
time. This can be improved by allowing formulas, as described in Section 7.1.2.
With the current design, it is inconvenient to perform further specialization if
an object present in a container is extended with the desire to replace the old
object in this container.

This problem arises, for example, when an intermediate specialization of a
unit type is declared. Its move-ability is intended to be specialized by other
more concrete unit types. They can add their new, improved ability to the set,
but the removal of the old entry is not guaranteed, especially if a mod performs

67

7 Conclusion

some modifications to this set already: The object could already have been
replaced, so its presence by a known name can’t be guaranteed.

A possible solution is to annotate the container insertions with some keyword
to mark it for the desired replacement strategy. Then, when a child object of
an object that is already present in the set is inserted in this set, the parent is
removed automatically.

To allow any combination of replacement and retaining of collection entries,
three operators have to be defined. One to mark a entry in the collection that
any child of this object will delete it (for example with @). Second, one to
annotate the object to be inserted so that any of its parents already in the set
are deleted (maybe with +). The third operator (e.g. !) prevents the action of
desired replacement, so that a previous annotation with @ is ignored.

Entity():
abilities : set(Ability) = {}

MoveAbility(Ability):
speed : float = 0

partial specialization of an entity
Unit(Entity):

Move(Ability):
speed = 1.0

proposed annotation for auto-replacement:
abilities += {@Move}

Villager(Unit):
specialization of unit movement ability:
VillagerMove(Unit.Move):

speed = 10.0

this will remove Move and add VillagerMove
abilities += {VillagerMove}

Listing 38: Container specialization ambiguity issues

An example for such a situation is in Listing 38. If the proposed new set inser-
tion operators are missing, the Villager will have Move and VillagerMove
in its ability set, which then creates possible ambiguities for the game engine
interpretation of both abilities.

It is possible to avoid such a situation by changing the data model to in-
heritance, then those three operators are not required so solve the problem, as
illustrated in Listing 39. The downside is that with inheritance it’s not permitted
to remove the Movable as parent, which is allowed in a set.

68

7.1 Future Work

Entity():
...

Movable():
movespeed : float = ...

Unit(Entity, Movable):
...

Villager(Unit):
movespeed = 10

Listing 39: Avoiding container specialization problem through inheritance

7.1.8 Serialization

Serialization will be useful for recreation of the view state. When nyan can
export a view, all transactions and the related timestamps can be stored perma-
nently on disk. When the initial database state is recreated, those transactions
can be restored and the view state will be the same as it was when the state was
dumped.

This approach can be extended to be robust against missing nyan-objects.
The assumption that the initial database state must be the same as it was for
the view serialization is not necessary: If new objects were added (e.g. by
additional mods), the view history can still be restored. If objects vanished,
for example when a mod was uninstalled, it is possible to restore unaffected
changes, because patches for objects no longer known can simply be skipped.
If unknown objects are used when patching values, either the whole patch or
just this member have to be skipped. That way, the view serialization can be
restored in the case the base state is different now. The consequences depend on
the missing objects of course, and a warning should be issued by the application
that objects have vanished.

7.1.9 Python Interface

The nyan-C++-API could be accompanied by a Python API, which allows the
same operations and requests. openage is scripted in Python and nyan needs
some form of Python interactions if mods need to access their custom data
structures that they added to the schema.

The tool of choice for this job would be Cython [3], it allows to create functions
that can be called from Python or C++ and redirect them to Python or C++. For
nyan, the C++ interface would be wrapped and provided as pure Python
functions, which can then be called from a mod script file. The same database
has to be reachable from C++ and Python because a mod will not directly use
nyan, but will instead be given a handle from the application through the
application API.

69

7 Conclusion

7.2 Summary

This thesis introduced nyan, a framework for run-time configuration of applica-
tions that use hierarchical and connected data structures, primarily aimed for
game engines as their modding interface.

First, the design of the input and schema language was presented, which
is written in a declarative Python-like syntax with enforced indentation. It
supports several data types and allows to declare nyan-objects, their data
values and relations to other nyan-objects. Patches were introduced as a special
form of a nyan-object which can change the values of a target object when
requested. This request is performed through transactions, which perform
atomic application of one or multiple patches. Transactions do not change the
default database state, instead, they commit their changes to a database view.
A view is a change history holder, created in order to support multiple parallel
state requests. This is useful to represent the changes necessary for one team
in a game, as well as for their individual players. To support this, views can
be organized in hierarchies so transaction changes with patches can propagate
to dependent views. Transactions can be performed at a custom point in time,
which may be in the future, or past. The interpretation of time solely depends
on the application, but in nyan this can be used to perform state predictions that
may turn out wrong. These are useful for game engines that work event-based,
where the game state is predicted into the future, and configuration changes
(for example the current speed of units) have to be committed to the nyan state.
nyan tries to provide useful error messages for any problem, especially if any
type problems occur. The type constraints are defined by the declaration of
nyan-objects themselves, which conveniently allows schema declarations and
extensions through the same syntax. Type errors are detected at the load-time
of data already to prevent crashes when the application has been running for
some time and then activates the problematic entry.

Second, implementation details were presented which bring the design ideas
to life in C++-code, which is released as free open-source software. nyan is
designed to be embedded in an application as dynamic library, which provides
all necessary features to use it as configuration and customization interface. The
implementation consists of a parser, which reads in provided data to create an
initial database state. During this, many sanity checks are performed and caches
are prepared, until all values and the schema are verified so that no type errors
remain. Views of this initial state provide distinct handles for nyan-objects,
intended to be stored at the locations where values will be retrieved by queries.
Value results are calculated by graph traversal over the linearized parent list of
the target object. The result can be casted to a C++-native type through template
meta-programming.

The next chapter presents examples on how the design and implementation
can be used in practice to create a configuration interface. Several use-cases
for language features of nyan are illustrated. If any of the type constraints are
not satisfied, the database will emit error messages for debugging. There is no

70

7.3 Conclusion

possibility to execute code in the nyan language. Untrusted functions may only
be called if the application permits their registration through a exposed script-
ing interfaces. The nyan framework provides a type-safe key-value database
that can record transaction history and allows schema extensions that do not
invalidate existing data records. The records can represent directed acyclic
graphs which are linearized by the C3 algorithm to perform calculations and
value propagations in queries. To date, other configuration systems do not
provide all the designed features at once.

7.3 Conclusion

The nyan framework combines several features not present in current config-
uration systems. The nyan language is used to declare nyan-objects as data
records. They allow calculations and specialization through inheritance from
multiple parent nyan-objects. After sanity checks, nyan-objects are stored in
the nyan database, which is embedded in an application. The data schema
is specified by the application through loading nyan-objects, so it can then
access records by known names and types. By adding new nyan-objects, which
declare new known names and types, the schema can be extended at runtime.
Queries over the nyan-API to the nyan database are used to retrieve combined
results from the data graph.

Notably, nyan uses patches to store possible changes to data records as a
data record and thus allows secure and user-friendly handling. Patches are
nyan-objects, so they can be modified as well. Multiple patches can perform
different modifications on the same nyan-object, hence combinations of patches
are possible. Recording the history of all changes enables predictions and
rollbacks.

Systems like JSON or YAML do not provide such features. Application specific
configuration systems like NewGRF or Creation Kit are not suitable to be
used outside of their domain. Programming APIs like Minecraft Forge are
very extensible, but allow execution of untrusted code without a sandbox. nyan
does not allow code execution, but it can be used to register function hooks.
nyan is a general purpose configuration framework, suitable for configuring
complex scenarios like the behavior of real-time strategy games.

71

Appendix

Glossary

API application programming interface.
Specification of the communication interface between two programs . 1–3,
5, 6, 9, 13–15, 17, 18, 24, 29, 30, 37, 41, 47–50, 54–56, 58–64, 66, 67, 69, 71, 76

AST abstract syntax tree.
representation of the syntactic structure of a nyan file . 40, 41

fqon fully qualified object name.
Unique identifier for a nyan-object . 19, 33, 34, 37, 41–43, 45, 76

GUI graphical user interface.
An interactive software designed for mouse and keyboard control. Con-
tains interface elements like buttons, text areas, menus and graphics . 11,
15, 19, 50

mod A ”modification” for an existing piece of work. 1, 2, 9, 13–15, 19, 24, 27,
29, 32, 43, 47–50, 52–55, 58, 60–63, 66, 67, 69, 70, 73, 76

mod pack A bundle of components that make up a mod with all its required
information and assets. 15, 19, 33, 34, 47, 57, 58, 76

UI user interface.
part of a software project that interacts with the user graphically . 13

VM virtual machine.
”an efficient, isolated duplicate of a real computer machine” [53] . 11

73

List of Figures

2.1 The inheritance diamond . 7

4.1 Overview of components . 17
4.2 Parent object injection through multiple inheritance 32
4.3 Different state views for different players 35
4.4 Game state change history and predictions over time 37

List of Tables

4.1 Available primitive types in the nyan language 21
4.2 Operators for each type . 24

5.1 All possible tokens in the nyan parser 40

6.1 Available features for several data description systems 62

7.1 Possible operators for dict . 66

List of Listings

1 Example of C3 linearization . 8

2 Example of JSON code . 11
3 Example of YAML code . 12
4 Example of QML code . 13

5 Basic definition of a nyan-object and its members 20
6 Primitive and collection member types 21
7 Primitive and collection member types 22
8 Object inheritance syntax . 22

75

List of Listings

9 Subtyping used for object values 23
10 Patch definition . 25
11 Update logic similarity between inheritance and patching 25
12 Inheritance modification by patch 26
13 A patch can replace operators . 27
14 Mutual exclusion of patch applications 27
15 Grammar for the nyan language, the entry is 〈file〉 28
16 Indentation enforcement . 29
17 API guarantees type safety . 30
18 Member name qualifications . 31
19 Ambiguous member name due to multiple inheritance 31
20 Injection of new parent through a patch 33
21 fqon creation from filename and object 33
22 Import with custom aliases . 34

23 Object name expansion algorithm to get an fqon 42
24 Query result calculation . 46

25 A simple mod-API example (engine.nyan) 48
26 Content creation with the given engine API (content.nyan) . 49
27 Auxiliary configuration file to register mods (modpack.nfo) . 49
28 Auxiliary configuration file to register mods (modpack.nfo) . 52
29 Possible unit type hierarchy definition 53
30 Adding a new technology by a mod 53
31 Modding a mod to balance the game 54
32 Simple scripting API hook registration 55
33 Example engine API with resources (engine.nyan) 56
34 Example content mod pack with Wood resource (content.nyan) 57
35 Example mod that adds Food (food mod.nyan) 58
36 Script in the food mod mod pack (behavior.py) 58
37 Various type checking errors . 59

38 Container specialization ambiguity issues 68
39 Avoiding container specialization problem through inheritance 69

76

Bibliography

[1] OpenTTD. https://www.openttd.org/. Accessed: 2017-09-23.

[2] Kim Barrett, Bob Cassels, Paul Haahr, David A Moon, Keith Playford, and
P Tucker Withington. A monotonic superclass linearization for dylan. In
ACM SIGPLAN Notices, volume 31, pages 69–82. ACM, 1996.

[3] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre
Seljebotn, and Kurt Smith. Cython: The best of both worlds. Computing in
Science & Engineering, 13(2):31–39, 2011.

[4] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML Ain’t Markup
Language (YAML™) version 1.2. http://yaml.org, Tech. Rep, 2009.

[5] Lars Bishop, Dave Eberly, Turner Whitted, Mark Finch, and Michael Shantz.
Designing a PC game engine. IEEE Computer Graphics and Applications, 18
(1):46–53, 1998.

[6] Alex Blewitt. Minecraft modding with Forge. https://www.infoq.
com/articles/minecraft-forge. Accessed: 2017-09-16.

[7] Joshua Bloch. How to design a good API and why it matters. In Companion
to the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, pages 506–507. ACM, 2006.

[8] Gilad Bracha. The programming language jigsaw: mixins, modularity and
multiple inheritance. PhD thesis, Dept. of Computer Science, University of
Utah, 1992.

[9] Timothy William Bray. The JavaScript object notation (JSON) data inter-
change format. RFC7159, 2014.

[10] Peter John Brown. Writing interactive compilers and interpreters. Wiley
Series in Computing, Chichester: Wiley, 1979.

[11] Luca Cardelli. A semantics of multiple inheritance. Information and compu-
tation, 76(2-3):138–164, 1988.

[12] Jose Felix Costa, Amilcar Sernadas, and Cristina Sernadas. Object inheri-
tance beyond subtyping. Acta Informatica, 31(1):5–26, 1994.

[13] Douglas Crockford. JSON: The fat-free alternative to XML. In Proc. of XML,
volume 2006, 2006.

77

https://www.openttd.org/
http://yaml.org
https://www.infoq.com/articles/minecraft-forge
https://www.infoq.com/articles/minecraft-forge

Bibliography

[14] Ole-Johan Dahl and Kristen Nygaard. SIMULA: an ALGOL-based simula-
tion language. Communications of the ACM, 9(9):671–678, 1966.

[15] Defining Object Types through QML Documents. https://doc.qt.io/
qt-5/qtqml-documents-definetypes.html. Accessed: 2017-09-16.

[16] DFHack Dwarf Fortress memory access library. https://dfhack.
readthedocs.io/. Accessed: 2017-09-16.

[17] Free Software Foundation. What is free software? https://www.gnu.
org/philosophy/free-sw.html. Accessed: 2017-09-16.

[18] Francis Galiegue, Kris Zyp, et al. Json schema: Core definitions and
terminology. Internet Engineering Task Force (IETF), page 32, 2013.

[19] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys (CSUR), 15(4):287–317, 1983.

[20] Dimitri Van Heesch. Doxygen: Source code documentation generator tool.
http://www.doxygen.org, 2008.

[21] Michi Henning. API design matters. Queue, 5(4):24–36, 2007.

[22] Jonas Jelten. nyan database code repository.
https://github.com/SFTtech/nyan/. Accessed: 2017-09-25.

[23] Ralph E. Johnson and Vincent Russo. Reusing object-oriented designs. Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign,
1991.

[24] Won Kim. Object-oriented databases: Definition and research directions.
IEEE Transactions on knowledge and Data Engineering, 2(3):327–341, 1990.

[25] John Levine. Flex & Bison: Text Processing Tools. O’Reilly Media, Inc., 2009.

[26] List of game engines. https://en.wikipedia.org/wiki/List_of_
game_engines. Accessed: 2017-09-13.

[27] John W. Lloyd. Practical advtanages of declarative programming. In
GULP-PRODE (1), pages 18–30, 1994.

[28] Robin Milner. A theory of type polymorphism in programming. Journal of
computer and system sciences, 17(3):348–375, 1978.

[29] Minecraft Forge API. https://mcforge.readthedocs.io/. Ac-
cessed: 2017-09-16.

[30] Minecraft Sponge API. https://www.spongepowered.org/. Ac-
cessed: 2017-09-16.

78

https://doc.qt.io/qt-5/qtqml-documents-definetypes.html
https://doc.qt.io/qt-5/qtqml-documents-definetypes.html
https://dfhack.readthedocs.io/
https://dfhack.readthedocs.io/
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
http://www.doxygen.org
https://github.com/SFTtech/nyan/
https://en.wikipedia.org/wiki/List_of_game_engines
https://en.wikipedia.org/wiki/List_of_game_engines
https://mcforge.readthedocs.io/
https://www.spongepowered.org/

Bibliography

[31] Modder builds his own custom iPhone 7 that restores the headphone
jack. https://www.theverge.com/circuitbreaker/2017/9/7/
16267418. Accessed: 2017-09-15.

[32] Kyle Andrew Moody. Modders: changing the game through user-generated
content and online communities. The University of Iowa, 2014.

[33] Ameya Nayak, Anil Poriya, and Dikshay Poojary. Type of NOSQL
databases and its comparison with relational databases. International Jour-
nal of Applied Information Systems, 5(4):16–19, 2013.

[34] NewGRF specification. https://newgrf-specs.tt-wiki.net/
wiki/Main_Page. Accessed: 2017-09-19.

[35] Michael A Olson, Keith Bostic, and Margo I Seltzer. Berkeley db. In
USENIX Annual Technical Conference, FREENIX Track, pages 183–191, 1999.

[36] openage - free age of empires engine. https://github.com/SFTtech/
openage. Accessed: 2017-09-02.

[37] OpenTTD New Graphics Resource File. https://wiki.openttd.org/
NewGRF. Accessed: 2017-09-19.

[38] OpenTTD NewGRF Meta Language. https://newgrf-specs.
tt-wiki.net/wiki/NML:Main. Accessed: 2017-09-19.

[39] Helen Pearson. Genetics: what is a gene? Nature, 441(7092):398–401, 2006.

[40] PEP 20 – The Zen of Python. https://www.python.org/dev/peps/
pep-0020/. Accessed: 2017-09-20.

[41] Markus Persson and Jens Bergensten. Minecraft. Computer software. Stock-
holm, Sweden: Mojang AB. Retrieved from http://minecraft.net, 2011.

[42] Python lexical analysis. https://docs.python.org/3/reference/
lexical_analysis.html. Accessed: 2017-09-20.

[43] Python programming language. https://python.org/. Accessed:
2017-09-20.

[44] Python standard types. https://docs.python.org/3/library/
stdtypes.html. Accessed: 2017-09-20.

[45] Pythonic code style. http://docs.python-guide.org/en/latest/
writing/style/. Accessed: 2017-09-20.

[46] QML declarative interface language. https://doc.qt.io/qt-5/
qmlapplications.html. Accessed: 2017-09-16.

[47] Qt Development Framework. https://www.qt.io/. Accessed: 2017-
09-16.

79

https://www.theverge.com/circuitbreaker/2017/9/7/16267418
https://www.theverge.com/circuitbreaker/2017/9/7/16267418
https://newgrf-specs.tt-wiki.net/wiki/Main_Page
https://newgrf-specs.tt-wiki.net/wiki/Main_Page
https://github.com/SFTtech/openage
https://github.com/SFTtech/openage
https://wiki.openttd.org/NewGRF
https://wiki.openttd.org/NewGRF
https://newgrf-specs.tt-wiki.net/wiki/NML:Main
https://newgrf-specs.tt-wiki.net/wiki/NML:Main
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
http://minecraft.net
https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/reference/lexical_analysis.html
https://python.org/
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
http://docs.python-guide.org/en/latest/writing/style/
http://docs.python-guide.org/en/latest/writing/style/
https://doc.qt.io/qt-5/qmlapplications.html
https://doc.qt.io/qt-5/qmlapplications.html
https://www.qt.io/

Bibliography

[48] Daniel J Rosenkrantz and Richard Edwin Stearns. Properties of determin-
istic top-down grammars. Information and Control, 17(3):226–256, 1970.

[49] Walt Scacchi. Computer game mods, modders, modding, and the mod
scene. First Monday, 15(5), 2010.

[50] Skyrim Creation Kit. https://www.creationkit.com/index.php?
title=Main_Page. Accessed: 2017-09-19.

[51] Skyrim Creation Kit Tutorials. https://www.creationkit.com/
index.php?title=Category:Tutorials. Accessed: 2017-09-19.

[52] Skyrim Papyrus scripting. https://www.creationkit.com/index.
php?title=Category:Papyrus. Accessed: 2017-09-19.

[53] James E Smith and Ravi Nair. The architecture of virtual machines. Com-
puter, 38(5):32–38, 2005.

[54] Alan Snyder. Encapsulation and inheritance in object-oriented program-
ming languages. In ACM Sigplan Notices, volume 21, pages 38–45. ACM,
1986.

[55] Bethesda Softworks. The Elder Scrolls V: Skyrim. Computer game, 2011.

[56] Jimmy Soni and Rob Goodman. A Mind at Play: How Claude Shannon
Invented the Information Age. Simon & Schuster, 2017.

[57] Bjarne Stroustrup. The C++ programming language. Pearson Education,
2013.

[58] Tes5Mod File Format. http://en.uesp.net/wiki/Tes5Mod:Mod_
File_Format. Accessed: 2017-09-19.

[59] Understanding the Creation Engine Data Format. https:
//www.creationkit.com/index.php?title=Category:
Getting_Started. Accessed: 2017-09-19.

[60] Johannes Walcher. Event-driven game engine in realtime stategy games.
Bachelor thesis, Technische Universität München, Oktober 2017.

[61] Martin P Ward. Language-oriented programming. Software-Concepts and
Tools, 15(4):147–161, 1994.

80

https://www.creationkit.com/index.php?title=Main_Page
https://www.creationkit.com/index.php?title=Main_Page
https://www.creationkit.com/index.php?title=Category:Tutorials
https://www.creationkit.com/index.php?title=Category:Tutorials
https://www.creationkit.com/index.php?title=Category:Papyrus
https://www.creationkit.com/index.php?title=Category:Papyrus
http://en.uesp.net/wiki/Tes5Mod:Mod_File_Format
http://en.uesp.net/wiki/Tes5Mod:Mod_File_Format
https://www.creationkit.com/index.php?title=Category:Getting_Started
https://www.creationkit.com/index.php?title=Category:Getting_Started
https://www.creationkit.com/index.php?title=Category:Getting_Started

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Outline

	2 Foundation
	2.1 Game Engine
	2.2 Modding APIs
	2.3 Database
	2.4 Inheritance
	2.5 Language Oriented Programming

	3 Related Work
	3.1 YAML and JSON
	3.2 QML
	3.3 Mod APIs
	3.3.1 Minecraft Forge
	3.3.2 OpenTTD NewGRF
	3.3.3 Skyrim Creation Kit

	4 Design
	4.1 Engine and Content Separation
	4.2 Concept
	4.3 Input Language
	4.3.1 Object Definition
	4.3.2 Types
	4.3.3 Inheritance
	4.3.4 Values and Operators
	4.3.5 Patch Definitions
	4.3.6 Language Grammar

	4.4 Type System
	4.5 Multiple Inheritance
	4.6 Namespaces and Importing
	4.7 Database Views
	4.8 Transactions
	4.9 Application Interaction

	5 Implementation
	5.1 Lexical Analysis
	5.2 Abstract Syntax Tree
	5.3 Initial State
	5.4 Storage
	5.5 Views and Transactions
	5.6 Queries
	5.7 General Remarks

	6 Evaluation and Discussion
	6.1 Functionality
	6.1.1 Application Integration
	6.1.2 Unit Hierarchy
	6.1.3 Mod Combination
	6.1.4 Creating a Scripting API
	6.1.5 Schema Extension

	6.2 Error Checking
	6.3 Security
	6.4 Design Considerations
	6.5 Feature Comparison
	6.6 Limitations
	6.6.1 Database Properties
	6.6.2 Expressions
	6.6.3 Update Notifications

	7 Conclusion
	7.1 Future Work
	7.1.1 Compiling nyan
	7.1.2 Value Formulas
	7.1.3 Event Callbacks
	7.1.4 List and Dict Type
	7.1.5 Nesting Containers
	7.1.6 Documentation Generation
	7.1.7 Set Specialization Operators
	7.1.8 Serialization
	7.1.9 Python Interface

	7.2 Summary
	7.3 Conclusion

	Appendix
	Glossary
	Figures
	Tables
	Listings
	Bibliography

